Social media and financial markets: The impact of Twitter sentiment on the Johannesburg Stock Exchange

Thiasha Naidoo (1)
(1) University of KwaZulu-Natal, South Africa

Abstract

This study examines the effect of Twitter-derived investor sentiment on stock market volatility in South Africa using daily data for the JSE All Share Index from 2016 to 2023. Using GARCH-M, E-GARCH-M, and GJR-GARCH-M, the results show that the GJR-GARCH-M specification provides the best fit both before and after incorporating sentiment. Twitter sentiment significantly amplifies market volatility, with negative sentiment exerting a more substantial impact than positive sentiment, consistent with asymmetric volatility dynamics and the leverage effect. Overall, the findings demonstrate that Twitter-derived sentiment contains valuable information for modelling and understanding volatility in emerging equity markets such as South Africa.

Full text article

Generated from XML file

References

Agarwal, S., Kumar, S., & Goel, U. (2021). Social media and the stock markets: an emerging market perspective. Business Economics and Management (JBEM), 22(6), 1614-1632. DOI: https://doi.org/10.3846/jbem.2021.15619

Alagidede, P. & Panagiotidis, T. (2009). Modelling stock returns in Africa's emerging equity markets. International review of financial analysis, 18(1-2), 1-11. DOI: https://doi.org/10.1016/j.irfa.2009.02.001

Alomari, E., Katib, I., Albeshri, A., & Mehmood, R. (2021). COVID-19: Detecting government pandemic measures and public concerns from Twitter Arabic data using distributed machine learning. International journal of environmental research and public health, 18(1), 282. DOI: https://doi.org/10.3390/ijerph18010282

Amirshahi, B. & Lahmiri, S. (2023). Hybrid deep learning and GARCH-family models for forecasting volatility of cryptocurrencies. Machine Learning with Applications, 12, 100465. DOI: https://doi.org/10.1016/j.mlwa.2023.100465

Andleeb, R. (2024). Investor sentiment dynamics and returns in emerging equity markets (Doctoral dissertation, Capital University).

Aras, S., (2021). Stacking hybrid GARCH models for forecasting Bitcoin volatility. Expert Systems with Applications, 174, 114747. DOI: https://doi.org/10.1016/j.eswa.2021.114747

Athari, S.A., Khalid, A.A., & Syed, Q.R. (2024). Twitter-based economic uncertainty and the US energy market: An investigation using wavelet coherence. Energy Research Letters. DOI: https://doi.org/10.46557/001c.90917

Bhatt, S., Ghazanfar, M., & Amirhosseini, M. (2023). Machine learning based cryptocurrency price prediction using historical data and social media sentiment. Computer Science & Information Technology (CS & IT), 13(10), 1-11. DOI: https://doi.org/10.5121/csit.2023.131001

Bloomberg. (2025) Twitter Sentiment Analytics: Firm-Level Market Sentiment Scores. Bloomberg Terminal. [Online]. Available at: Bloomberg Terminal (Accessed: 21 May 2025).

Bollen, J., Mao, H. & Zeng, X., (2011). Twitter mood predicts the stock market. Journal of Computational Science, 2(1), 1-8. DOI: https://doi.org/10.1016/j.jocs.2010.12.007

Bollerslev, T. (1987). A conditionally heteroskedastic time series model for speculative prices and rates of return. The review of economics and statistics, 542-547. DOI: https://doi.org/10.2307/1925546

Bouri, E., Gupta, R., & Roubaud, D. (2019). Herding behavior in cryptocurrencies. Finance Research Letters, 29, 216-221. DOI: https://doi.org/10.1016/j.frl.2018.07.008

Brooks, C. (2019). Introductory Econometrics for Finance. 4th ed. Cambridge: Cambridge University Press. DOI: https://doi.org/10.1017/9781108524872

Chen, C.W., Watanabe, T., & Lin, E.M. (2023). Bayesian estimation of realized GARCH-type models with application to financial tail risk management. Econometrics and Statistics, 28, 30-46. DOI: https://doi.org/10.1016/j.ecosta.2021.03.006

Deveikyte, J., Geman, H., Piccari, C., and Provetti, A. (2022). A sentiment analysis approach to the prediction of market volatility. Frontiers in Artificial Intelligence, 5, 836809. DOI: https://doi.org/10.3389/frai.2022.836809

Duz Tan, S. & Tas, O., (2021). Social media sentiment in international stock returns and trading activity. Journal of Behavioral Finance, 22(2), 221-234. DOI: https://doi.org/10.1080/15427560.2020.1772261

Engle, R.F., (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica: Journal of the Econometric Society, 987-1007. DOI: https://doi.org/10.2307/1912773

Fonou-Dombeu, N.C., Nomlala, B.C., & Nyide, C.J. (2024). Investigating the effect of investor sentiment on stock return sensitivity to fundamental factors: case of JSE-listed companies. Cogent Business & Management, 11(1), 2353846. DOI: https://doi.org/10.1080/23311975.2024.2353846

Glosten, L.R., Jagannathan, R. & Runkle, D.E., (1993). On the relation between the expected value and the volatility of the nominal excess return on stocks. The journal of finance, 48(5), 1779-1801. DOI: https://doi.org/10.1111/j.1540-6261.1993.tb05128.x

Graham, C. & Stough, R. (2025). Consumer perceptions of AI chatbots on Twitter (X) and Reddit: an analysis of social media sentiment and interactive marketing strategies. Journal of Research in Interactive Marketing. DOI: https://doi.org/10.1108/JRIM-05-2024-0237

Guijarro, F., Moya-Clemente, I. & Saleemi, J. (2019). Liquidity risk and investors’ mood: linking financial market liquidity to sentiment analysis via Twitter in the S&P 500 index, Sustainability, 11(24), 7048. DOI: https://doi.org/10.3390/su11247048

Gupta, R., Nel, J., & Pierdzioch, C. (2023). Drivers of realized volatility for emerging countries with a focus on South Africa: Fundamentals versus sentiment. Mathematics, 11(6), 1371. DOI: https://doi.org/10.3390/math11061371

Hiramoney, P., Muguto, L., & Muguto, H.T. (2024). Investor sentiment, stock market returns, and volatility: evidence from the Johannesburg Stock Exchange. Business Resilience, Continuity and Regeneration, 7.

Jasim, Y.A., Saeed, M.G., & Raewf, M.B. (2022). Analyzing social media sentiment: Twitter as a case study. ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal, 11(4), 427-450. DOI: https://doi.org/10.14201/adcaij.28394

Javed, F. & Mantalos, P. (2013). GARCH-type models and performance of information criteria. Communications in Statistics-Simulation and Computation, 42(8), 1917-1933.

Johannesburg Stock Exchange (2025) (n.d.) 'Market Capitalization'. Available at: https://www.jse.co.za/learn-how-to-invest/accessing-market/market-capitalisation (Accessed: 10 March 2025).

Kandasamy, T. & Bechkoum, K. (2024). Impact of Social Media Sentiments on Stock Market Behavior: A Machine Learning Approach to Analyzing Market Dynamics. Journal of Comprehensive Business Administration Research. DOI: https://doi.org/10.47852/bonviewJCBAR42022006

Kim, J.M., Kim, D.H., & Jung, H. (2021). Estimating yield spreads volatility using GARCH-type models—the North American Journal of Economics and Finance, 57, 101396. DOI: https://doi.org/10.1016/j.najef.2021.101396

Koo, E. & Kim, G., (2022). A hybrid prediction model integrating GARCH models with a distribution manipulation strategy based on lstm networks for stock market volatility. IEEE Access, 10, 34743-34754. DOI: https://doi.org/10.1109/ACCESS.2022.3163723

Lawrence, B., Moodley, F., & Ferreira-Schenk, S. (2024). Macroeconomic determinants of the JSE size-based industries' connectedness: Evidence from changing market conditions. Cogent Economics & Finance, 12(1), 2397454. DOI: https://doi.org/10.1080/23322039.2024.2397454

Lee, C.B., Io, H.N., & Tang, H. (2022). Sentiments and perceptions after a privacy breach incident. Cogent Business & Management, 9(1), 2050018. DOI: https://doi.org/10.1080/23311975.2022.2050018

Maree, S. & Johnston, K. (2015). Critical insights into the design of big data analytics research: how Twitter" moods" predict stock exchange index movement: informatics for development. The African Journal of Information and Communication, 2015(15), 53-67. DOI: https://doi.org/10.23962/10539/20330

Mathebula, N. (2025). Debt Crises and Sovereign Risk in Africa. Taylor & Francis.

Mendoza-Urdiales, R.A., Núñez-Mora, J.A., Santillán-Salgado, R.J. & Valencia-Herrera, H., (2022). Twitter sentiment analysis and influence on stock performance using transfer entropy and EGARCH methods. Entropy, 24(7), p.874. DOI: https://doi.org/10.3390/e24070874

Metta, S., Madhavan, N., & Narayanan, K.K. (2022). Power of 280: Measuring the Impact of Elon Musk's Tweets on the Stock Market. Ushus Journal of Business Management, 21(1), 17-43. DOI: https://doi.org/10.12725/ujbm.58.2

Moodley, F., Ferreira-Schenk, S., & Matlhaku, K. (2025). The Effects of Investor Sentiment on Stock Return Indices Under Changing Market Conditions: Evidence from South Africa. International Journal of Financial Studies, 13(2), 70. DOI: https://doi.org/10.3390/ijfs13020070

Mpofu, S., (2021). Social media memes as commentary in health disasters in South Africa and Zimbabwe. Digital humour in the COVID-19 pandemic: Perspectives from the global south, 19-45. DOI: https://doi.org/10.1007/978-3-030-79279-4_2

Mudinas, A., Zhang, D., & Levene, M. (2019). Market trend prediction using sentiment analysis: lessons learned and paths forward. arXiv preprint arXiv:1903.05440.

Muguto, L. & Muzindutsi, P.F., (2022). A comparative analysis of the nature of stock return volatility in BRICS and G7 markets. Journal of Risk and Financial Management, 15(2), 85. DOI: https://doi.org/10.3390/jrfm15020085

Muzindutsi, P.F., Apau, R., Muguto, L., & Muguto, H.T. (2023). The impact of investor sentiment on housing prices and the property stock index volatility in South Africa. Real Estate Management and Valuation, 31(2), 1-17. DOI: https://doi.org/10.2478/remav-2023-0009

Ncume, V., van Zyl, T.L., & Paskaramoorthy, A. (2022). Volatility forecasting using Deep Learning and sentiment analysis. arXiv preprint arXiv:2210.12464.

Nel, G.F. & du Toit, Y., (2023). Stakeholders' engagement in 280 characters: Evidence from JSE-listed companies. South African Journal of Economic and Management Sciences, 26(1), 1-12. DOI: https://doi.org/10.4102/sajems.v26i1.4964

Nelson, D.B. (1991). Conditional heteroskedasticity in asset returns: A new approach. Econometrica: Journal of the Econometric Society, 347-370. DOI: https://doi.org/10.2307/2938260

Nisar, T.M. & Yeung, M., (2018). Twitter as a tool for forecasting stock market movements: A short-window event study. The journal of finance and data science, 4(2), 101-119. DOI: https://doi.org/10.1016/j.jfds.2017.11.002

Nyakurukwa, K. & Seetharam, Y. (2022). Can a 280-character message explain stock returns? Evidence from South Africa. Managerial Finance, 48(4), 663-686. DOI: https://doi.org/10.1108/MF-12-2021-0598

Oh, C. and Sheng, O. (2011). Investigating predictive power of stock micro blog sentiment in forecasting future stock price directional movement.

Oliveira, N., Cortez, P. & Areal, N. (2017). The impact of microblogging data for stock market prediction: Using Twitter to predict returns, volatility, trading volume, and survey sentiment indices. Expert Systems with Applications, 73, 125-144. DOI: https://doi.org/10.1016/j.eswa.2016.12.036

Ranco, G., Aleksovski, D., Caldarelli, G., Grčar, M. & Mozetič, I., (2015). The effects of Twitter sentiment on stock price returns. PloS one, 10(9), e0138441. DOI: https://doi.org/10.1371/journal.pone.0138441

Rao, T. & Srivastava, S. (2014). Twitter sentiment analysis: How to hedge your bets in the stock markets. In State-of-the-art applications of social network analysis (227-247). Cham: Springer International Publishing. DOI: https://doi.org/10.1007/978-3-319-05912-9_11

Ridhwan, K.M. & Hargreaves, C.A., (2021). Leveraging Twitter data to understand public sentiment for the COVID‐19 outbreak in Singapore. International Journal of Information Management Data Insights, 1(2), 100021. DOI: https://doi.org/10.1016/j.jjimei.2021.100021

Rupande, L., Muguto, H.T., & Muzindutsi, P.F. (2019). Investor sentiment and stock return volatility: Evidence from the Johannesburg Stock Exchange. Cogent Economics & Finance, 7(1), 1600233. DOI: https://doi.org/10.1080/23322039.2019.1600233

Ruths, D. & Pfeffer, J. (2014). Social media for large studies of behavior. Science, 346(6213), 1063-1064. DOI: https://doi.org/10.1126/science.346.6213.1063

Seetharam, Y. and Nyakurukwa, K., (2024). Headlines or Hashtags? The battle in social media for investor sentiment in the stock market. International Journal of Information Management Data Insights, 4(2), 100273. DOI: https://doi.org/10.1016/j.jjimei.2024.100273

Smales, L.A. (2014). News sentiment in the gold futures market. Journal of Banking & Finance, 49, .275-286. DOI: https://doi.org/10.1016/j.jbankfin.2014.09.006

Souza, D.M.S.D. & Martins, O.S. (2024). Brazilian stock market performance and investor sentiment on Twitter. Revista de Gestão, 31(1), 18-33. DOI: https://doi.org/10.1108/REGE-07-2021-0145

Sprenger, T.O., Tumasjan, A., Sandner, P.G., & Welpe, I.M. (2014). Tweets and trades: The information content of stock microblogs. European Financial Management, 20(5), 926-957. DOI: https://doi.org/10.1111/j.1468-036X.2013.12007.x

Steyn, D.H., Greyling, T., Rossouw, S. & Mwamba, J.M., (2020). Sentiment, emotions, and stock market predictability in developed and emerging markets (No. 502). Global Labor Organization (GLO).

Sul, H.K., Dennis, A.R., & Yuan, L. (2017). Trading on Twitter: Using social media sentiment to predict stock returns. Decision Sciences, 48(3), 454-488. DOI: https://doi.org/10.1111/deci.12229

Tetlock, P.C. (2007). Giving content to investor sentiment: The role of media in the stock market. The Journal of Finance, 62(3), 1139-1168. DOI: https://doi.org/10.1111/j.1540-6261.2007.01232.x

Tiwari, S., Verma, A., Garg, P., & Bansal, D. (2020), March. Social media sentiment analysis on Twitter datasets. In 2020, the 6th international conference on advanced computing and communication systems (ICACCS) (925-927). IEEE. DOI: https://doi.org/10.1109/ICACCS48705.2020.9074208

Zhang, X., Qu, S., Huang, J., Fang, B., & Yu, P. (2018). Stock market prediction via multi-source multiple instance learning. IEEE Access, 6, 50720-50728. DOI: https://doi.org/10.1109/ACCESS.2018.2869735

Zheludev, I., Smith, R. & Aste, T. (2014). When can social media lead financial markets?. Scientific reports, 4(1), 4213. DOI: https://doi.org/10.1038/srep04213

Authors

Thiasha Naidoo
thiashanaidoo20@gmail.com (Primary Contact)
Author Biography

Thiasha Naidoo, University of KwaZulu-Natal

Thiasha Naidoo is a doctoral researcher in finance at the University of KwaZulu-Natal, South Africa. Her research focuses on financial market quality and investor sentiment, with particular emphasis on the influence of social media-driven information in emerging financial markets. Her broader research interests include behavioral finance, market microstructure, and the role of information flow in asset pricing and market dynamics.

Naidoo, T. (2025). Social media and financial markets: The impact of Twitter sentiment on the Johannesburg Stock Exchange. Modern Finance, 3(4), 80–95. https://doi.org/10.61351/mf.v3i4.428

Article Details