Properties of returns and variance and the implications for time series modelling: Evidence from South Africa

Jan Jakub Szczygielski (1) Chimwemwe Chipeta (2)
(1) Kozminski University & University of Pretoria, Poland
(2) University of the Witwatersrand, South Africa

Abstract

This paper investigates the properties of South African stock returns and the underlying variance. The investigation into the properties of stock returns and the behaviour of the variance underlying returns is undertaken using model-free approaches and through the application of ARCH/GARCH models. The results indicate that, as with other stock markets, returns on the South African stock market depart from normality and that variance displays evidence of heteroscedasticity, long memory, persistence, and asymmetry. Applying the EGARCH(p,q,m) and IGARCH(p,q) specifications confirms these findings and the application of these models suggests differing characteristics for variance structures underlying the South African stock market. In light of the findings relating to the properties of stock returns and the characteristics of variance and its structure, implications are outlined, and recommendations on how time-series specifications may be estimated are made.

Full text article

Generated from XML file

References

Agung, I. G. N. (2009). Time series analysis using Eviews. John Wiley and Sons. https://doi.org/10.1002/9780470823699

Akgiray, V. (1989). Conditional heteroscedasticity in time series of stock returns: evidence and forecasts. Journal of Business, 62(1), 55-88. https://doi.org/10.1086/296451

Anagnostidis, P., & Emmanouilides, C. J. (2015). Nonlinearity in high-frequency stock returns: evidence from the Athens Stock Exchange. Physica A: Statistical Mechanics and its Applications, 421, 473-487. https://doi.org/10.1016/j.physa.2014.11.056

Andersen, T.G., Bollerslev, T., Diebold, F.X., & Vega, C. (2003). Micro effects of macro announcements: real-time price discovery in foreign exchange. The American Economic Review, 93(1), 38-62. https://doi.org/10.1257/000282803321455151

Armitage, S., & Brzeszczynski, J. (2011). Heteroscedasticity and interval effects in estimating beta: UK evidence. Applied Financial Economics, 21(20), 1525-1538. https://doi.org/10.1080/09603107.2011.581208

Bachalier, L.J.B.A. (1914). Le Jeu, la Chance, et le Hasard. E. Flammarion.

Barreto, H., & Howland, F.M. (2006). Introductory econometrics: Using Monte Carlo simulation with Microsoft Excel. Cambridge University Press. https://doi.org/10.1017/CBO9780511809231

Baur, D.G., Dimpfl, T., & Jung, R.C. (2012). Stock return autocorrelations revisited: a quantile regression approach. Journal of Empirical Finance, 19(2), 254-265. https://doi.org/10.1016/j.jempfin.2011.12.002

Bera, A., Bubnys, E., & Park, H. (1988). Conditional heteroscedasticity in the market model and efficient estimates of betas. Financial Review, 23(2), 201-214. https://doi.org/10.1111/j.1540-6288.1988.tb00786.x

Berry, M.A., Burmeister, E., & McElroy, M.B. (1988). Sorting out risks using known apt factors. Financial Analysts Journal, 44(2), 29-42. https://doi.org/10.2469/faj.v44.n2.29

Bhattacharya, S. N., & Bhattacharya, M. (2012). Long memory in stock returns: A study of emerging markets. Iranian Journal of Management Studies, 5(2), 67-88.

Black, F. (1976). Studies of stock market volatility changes. Paper presented at the 1976 Meetings of the American Statistical Association, Business and Economic Statistics Section.

Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31(3), 307-327. https://doi.org/10.1016/0304-4076(86)90063-1

Boubaker, A., & Makram, B. (2012). Modelling heavy tails and double long memory in North African stock market returns. The Journal of North African Studies, 17(2), 195-214. https://doi.org/10.1080/13629387.2012.655068

Bouchaud, J-P., Matacz, A., & Potters, M. (2001). Leverage effects in financial markets: the retarded volatility model. Physical Review Letters, 87(22), 1-4. https://doi.org/10.1103/PhysRevLett.87.228701

Box, G.E., & Pierce, D.A. (1970). Distribution of residual autocorrelations in autoregressive-integrated moving average time series models. Journal of the American statistical Association, 65(332), 1509-1526. https://doi.org/10.1080/01621459.1970.10481180

Brown, S.J., & Warner, J.B. (1985). Using daily stock returns: the case of event studies. Journal of Financial Economics, 14(1), 3-31. https://doi.org/10.1016/0304-405X(85)90042-X

Campbell, J.Y., Lo, A.W., & MacKinlay, A.C. (1997). The econometrics of financial markets. Princeton University Press. https://doi.org/10.1515/9781400830213

Chkili, W., Aloui, C., & Nguyen, D.K. (2012). Asymmetric effects and long memory in dynamic volatility relationships between stock returns and exchange rates. Journal of International Financial Markets, Institutions and Money, 22(4), 738-757. https://doi.org/10.1016/j.intfin.2012.04.009

Cont, R. (2001). Empirical properties of asset returns: stylized facts and statistical issues. Quantitative Finance, 1(2), 223-236. https://doi.org/10.1080/713665670

Cryer, J.D., & Chan, K-S. (2008). Time series analysis with applications in R (2nd ed). Springer. https://doi.org/10.1007/978-0-387-75959-3

Desjardins, J. (2016). All of the world's stock exchanges. Retrieved from http://money.visualcapitalist.com/all-of-theworlds-stock-exchanges-by-size/ on September 6, 2017.

Desjardins, J. (2017). The 20 largest stock exchange in the world. Retrieved from http://www.visualcapitalist.com/20-largest-stock-exchanges-world/ on September 6, 2017.

Ding, Z., Granger, C.W.J., & Engle, R.F. (1993). A long memory property of stock market returns and a new model. Journal of Empirical Finance, 1(1), 83-106. https://doi.org/10.1016/0927-5398(93)90006-D

Franke, J., Härdle, W.K., & Hafner, C.M. (2011). Statistics of Financial Markets. An Introduction (4th ed). Springer. https://doi.org/10.1007/978-3-642-16521-4

Ford, G.S. (2003). Daily stock returns, non-normality and hypothesis testing. Retrieved September 6, 2017, from http://www.aestudies.com/library/daily.pdf

Giannopolous, K. (2000). Measuring volatility. In M. Lore & L. Borodovsky (Eds.), The Professional's Handbook of Financial Risk Management (pp. 42-74). Butterworth-Heinemann.

Gujarati, D.N. (2003). Basic Econometrics (4th ed.) McGraw-Hill/Irwin.

Hamilton, J.D. (2010). Macroeconomics and ARCH. In T. Bollerslev, J. Russell, & M. Watson (Eds.), Volatility and Time Series Econometrics: Essays in Honor of Robert Engle (pp. 79-96). Oxford University Press. https://doi.org/10.1093/acprof:oso/9780199549498.003.0005

Henry, O.T. (2002). Long memory in stock returns: some international evidence. Applied Financial Economics, 12, 725-729. https://doi.org/10.1080/09603100010025733

Herwartz, H. (2004). Conditional heteroscedasticity. In H. Lütkepohl & M. Krätzig (Eds.), Applied Time Series Econometrics (pp. 197-220). Cambridge University Press. https://doi.org/10.1017/CBO9780511606885.006

Hodge, V.J., & Austin, J. (2004). A survey of outlier detection methodologies. Artificial Intelligence Review, 22 (2), 85-126. https://doi.org/10.1023/B:AIRE.0000045502.10941.a9

Jacobsen, B., & Dannenburg, D. (2003). Volatility clustering in monthly stock returns. Journal of Empirical Finance, 10 (4), 479 - 503. https://doi.org/10.1016/S0927-5398(02)00071-3

Johannesburg Stock Exchange. (2017). Ground rules for the management of the FTSE/JSE Africa Index Series. Retrieved September 6, 2017, from https://www.jse.co.za/content/JSERulesPoliciesandRegulationItems/FTSE%20JSE%20Ground%20Rules%20.pdf

Kang, S.H., Kang, S.M., & Yoon, S.M. (2009). Forecasting volatility of crude oil markets. Energy Economics, 31 (1), 119-125. https://doi.org/10.1016/j.eneco.2008.09.006

Kasman, S., Turgutlu, E., & Ayhan, A.D. (2009). Long memory in stock returns: evidence from the major emerging central European stock markets. Applied Economics Letters, 16(17), 1763-1768. https://doi.org/10.1080/13504850701663231

Kendall, M.G., & Hill, A.B. (1953). The analysis of economic time-series-part I: prices. Journal of the Royal Statistical Society: Series A (General), 116 (1), 11-34. https://doi.org/10.2307/2980947

Kinnunen, J. (2013). Dynamic return predictability in the Russian stock market. Emerging Markets Review, 15(June 2013), 107-121. https://doi.org/10.1016/j.ememar.2012.12.001

Kirchgässner, G., & Wolters, J. (2007). Introduction to Modern Time Series Analysis. Springer. https://doi.org/10.1007/978-3-540-73291-4

Kumar, R. & Dhankar, R.S. (2010). Empirical analysis of conditional heteroscedasticity in time series of stock returns and asymmetric effect on volatility. Global Business Review, 11 (1), 21-33. https://doi.org/10.1177/097215090901100102

Lim, K.P., Luo, W. & Kim, J.H. (2013). Are US stock index returns predictable? Evidence from automatic autocorrelation-based tests. Applied Economics, 45 (8), 953-962. https://doi.org/10.1080/00036846.2011.613782

Mandelbrot, B. (1963). The variation of certain speculative prices. Journal of Business, 36 (4), 394- 419. https://doi.org/10.1086/294632

Mandelbrot, B. (1967). The variation of some other speculative prices. Journal of Business, 40 (4), 393-413. https://doi.org/10.1086/295006

Mangani, R. (2007). Distributional properties of JSE prices and returns. Investment Analysts Journal, 36(66), 57-72. https://doi.org/10.1080/10293523.2007.11082493

McMillan, D.G., & Ruiz, I. (2009). Volatility persistence, long memory and time-varying unconditional mean: Evidence from 10 equity indices. Quarterly Review of Economics and Finance, 49 (2), 578-595. https://doi.org/10.1016/j.qref.2007.09.006

Nel, W.S. (2011). The application of the Capital Asset Pricing Model: A South African perspective. African Journal of Business Management, 5(13), 5336-5347.

Nelson, D.B. (1991). Conditional heteroskedasticity in asset returns: A new approach. Econometrica, 347-370. https://doi.org/10.2307/2938260

Nelson, D.B. (1992). Inequality constraints in the univariate GARCH model. Journal of Business and Economic Statistics, 10 (2), 229-235. https://doi.org/10.1080/07350015.1992.10509902

Newey, W. K., & West, K. D. (1987). Hypothesis testing with efficient method of moments estimation. International Economic Review, 28(3), 777-787. https://doi.org/10.2307/2526578

Ning, C., Xu, D., & Wirjanto, T. S. (2015). Is volatility clustering of asset returns asymmetric? Journal of Banking and Finance, 52, 62-76. https://doi.org/10.1016/j.jbankfin.2014.11.016

Niu, H., & Wang, J. (2013). Volatility clustering and long memory of financial time series and financial price model. Digital Signal Processing, 23(2), 489-498. https://doi.org/10.1016/j.dsp.2012.11.004

Officer, R. R. (1972). The distribution of stock returns. Journal of the American Statistical Association, 67(340), 807-812. https://doi.org/10.1080/01621459.1972.10481297

Peiró, A. (1999). Skewness in financial returns. Journal of Banking and Finance, 23(6), 847-862. https://doi.org/10.1016/S0378-4266(98)00119-8

Poon, S., & Taylor, S. J. (1991). Macroeconomic factors and the UK stock market. Journal of Business Finance and Accounting, 8(5), 619-636. https://doi.org/10.1111/j.1468-5957.1991.tb00229.x

Poon, S-H. (2005). A Practical Guide to Forecasting Financial Market Volatility. John Wiley and Sons, Inc.

Priestley, R. (1996). The arbitrage pricing theory, macroeconomic and financial factors, and expectation generating processes. Journal of Banking and Finance, 20 (5), 869-890. https://doi.org/10.1016/0378-4266(95)00035-6

PWC. (2015). Valuation methodology survey 2014/2015. Retrieved September 6, 2017, from https://www.pwc.co.za/en/assets/pdf/valuation-methodology-survey-2015.pdf

Roll, R. (1992). Industrial structure and the comparative behavior of international stock market indices. Journal of Finance, 47(1), 3-41. https://doi.org/10.1111/j.1540-6261.1992.tb03977.x

Sadorsky, P. (2001). Risk factors in stock returns of Canadian oil and gas companies. Energy Economics, 23(1), 17-28. https://doi.org/10.1016/S0140-9883(00)00072-4

Sadorsky, P., & Henriques, I. (2001). Multifactor risk and the stock returns of Canadian paper and forest products companies. Forest Policy and Economics, 3(3-4), 199-208. https://doi.org/10.1016/S1389-9341(01)00064-8

Simkowitz, M. A., & Beedles, W. L. (1980). Asymmetric stable distributed security returns. Journal of the American Statistical Association, 75(370), 306-312. https://doi.org/10.1080/01621459.1980.10477467

Studenmund, A. H. (2011). Using Econometrics: A Practical Guide (6th ed.). Pearson Education Limited.

Wong, W. K., & Bian, G. (2000). Robust estimation in capital asset pricing model. Journal of Applied Mathematics and Decision Sciences, 4(1), 65-82. https://doi.org/10.1155/S1173912600000043

Xiao, L., & Aydemir, A. (2007). Volatility modeling and forecasting in finance. In J. Knight & S. Satchell (Eds.), Forecasting Volatility in the Financial Markets (3rd ed., pp. 1-45). Elsevier Ltd. https://doi.org/10.1016/B978-075066942-9.50003-0

Zivot, E. (2009). Practical issues in the analysis of univariate GARCH models. In T. G. Anderson, R. A. Davis, J-P. Kreiß, & T. V. Mikosch (Eds.), Handbook of Financial Time Series (pp. 113-155). Springer. https://doi.org/10.1007/978-3-540-71297-8_5

Authors

Jan Jakub Szczygielski
jszczygielski@kozminski.edu.pl (Primary Contact)
Chimwemwe Chipeta
Author Biographies

Jan Jakub Szczygielski , Kozminski University & University of Pretoria

1) Assistant Professor, Department of Finance, Kozminski University, ul. Jagiellonska 57/59, Warsaw, 03-301, Poland, jszczygielski@kozmski.edu.pl

2) Department of Financial Management, University of Pretoria, Private Bag x20, Hatfield, Pretoria, 0028, South Africa

Chimwemwe Chipeta , University of the Witwatersrand

Associate Professor: Corporate Finance, School of Economic and Business Sciences, University of the Witwatersrand, E-mail: chimwemwe.chipeta@wits.ac.za

Szczygielski , J. J., & Chipeta , C. (2023). Properties of returns and variance and the implications for time series modelling: Evidence from South Africa. Modern Finance, 1(1), 35–55. https://doi.org/10.61351/mf.v1i1.8

Article Details

No Related Submission Found