Forecasting the equity premium: Do deep neural network models work?
Abstract
This paper constructs deep neural network (DNN) models for equity-premium forecasting. We compare the forecasting performance of DNN models with that of ordinary least squares (OLS) and historical average (HA) models. The DNN models robustly work best and significantly outperform both OLS and HA models in both in- and out-of-sample tests and asset allocation exercises. Specifically, DNN models generate monthly out-of-sample R2 of 3.42% and an annual utility gain of 2.99% for a mean-variance investor from 2011:1 to 2016:12. Moreover, the forecasting performance of DNN models is enhanced by adding additional 14 variables selected from finance literature.
Full text article
References
Baker, M., & Wurgler, J. (2006). Investor Sentiment and the Cross‐Section of Stock Returns. Journal of Finance, 61(4), 1645-1680. https://doi.org/10.1111/j.1540-6261.2006.00885.x
Bekiros, S., Gupta, R., & Majumdar, A. (2016). Incorporating economic policy uncertainty in US equity premium models: A nonlinear predictability analysis. Finance Research Letters, 18, 291-296. https://doi.org/10.1016/j.frl.2016.01.012
Bengio, Y. (2009). Learning deep architectures for AI. Foundations and Trends® in Machine Learning, 2(1), 1-127. https://doi.org/10.1561/2200000006
Campbell, J. Y., & Thompson, S. B. (2008). Predicting Excess Stock Returns out of Sample: Can Anything Beat the Historical Average? Review of Financial Studies, 21(4), 1509-1531. https://doi.org/10.1093/rfs/hhm055
Cardarelli, R., Elekdag, S., & Lall, S. (2011). Financial stress and economic contractions. Journal of Financial Stability, 7(2), 78-97. https://doi.org/10.1016/j.jfs.2010.01.005
Clark, T. E., & West, K. D. (2007). Approximately normal tests for equal predictive accuracy in nested models. Journal of Econometrics, 138(1), 291-311. https://doi.org/10.1016/j.jeconom.2006.05.023
George, T. J., & Hwang, C. Y. (2004). The 52‐week high and momentum investing. Journal of Finance, 59(5), 2145-2176. https://doi.org/10.1111/j.1540-6261.2004.00695.x
Gu, S., Kelly, B. T., & Xiu, D. (2018). Empirical Asset Pricing via Machine Learning. SSRN working paper. http://dx.doi.org/10.2139/ssrn.3159577. https://doi.org/10.2139/ssrn.3159577
Gupta, R., Mwamba, J. W. M., & Wohar, M. E. (2018). The role of partisan conflict in forecasting the U.S. equity premium: A nonparametric approach. Finance Research Letters, 25, 131-136. https://doi.org/10.1016/j.frl.2017.10.023
Kandel, S., & Stambaugh, R. F. (1996). On the predictability of stock returns: an asset‐allocation perspective. Journal of Finance, 51(2), 385-424. https://doi.org/10.1111/j.1540-6261.1996.tb02689.x
Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
Nair, V., & Hinton, G. E. (2010). Rectified Linear Units Improve Restricted Boltzmann Machines. In Proceedings of the 27th International Conference on Machine Learning (ICML-10), 807-814.
Neely, C. J., Rapach, D. E., & Tu, J. et al. (2014). Forecasting the Equity Risk Premium: The Role of Technical Indicators. Management Science, 60(7), 1772-1791. https://doi.org/10.1287/mnsc.2013.1838
Rapach, D. E., Strauss, J. K., & Zhou, G. (2010). Out-of-Sample Equity Premium Prediction: Combination Forecasts and Links to the Real Economy. Review of Financial Studies, 23(2), 821-862. https://doi.org/10.1093/rfs/hhp063
Rapach, D., & Zhou, G. (2013). Forecasting stock returns. In Handbook of Economic Forecasting (pp. 328-383). Elsevier B.V. https://doi.org/10.1016/B978-0-444-53683-9.00006-2
Srivastava, N., Hinton, G., & Krizhevsky, A. et al. (2014). Dropout: A Simple Way to Prevent Neural Networks from Overfitting. Journal of Machine Learning Research, 15(1), 1929-1958.
Tibshirani, R. (2011). Regression Shrinkage and Selection via the Lasso. Journal of the Royal Statistical Society, 73(3), 267-288. https://doi.org/10.1111/j.1467-9868.2011.00771.x
Tikhonov, A. N., Leonov, A. S., & Yagola, A. G. (2018). Nonlinear ill-posed problems. London: Chapman & Hall. ISBN 0412786605.
Welch, I., & Goyal, A. (2008). A Comprehensive Look at the Empirical Performance of Equity Premium Prediction. Review of Financial Studies, 21(4), 1455-1508. https://doi.org/10.1093/rfs/hhm014
Authors
Copyright (c) 2023 Xianzheng Zhou, Hui Zhou, Huaigang Long
This work is licensed under a Creative Commons Attribution 4.0 International License.