Understanding crisis spillovers: US-BRICS market interdependence in times of turmoil
Abstract
This study investigates the interconnectedness of stock returns between the U.S. and BRICS economies over the period 2016 - 2023, using daily data and integrating quantile and frequency-based methodologies. The analysis provides a comprehensive assessment of short- and long-term dynamics, with particular attention to tail dependencies and crisis episodes. The findings reveal heightened spillovers during the COVID-19 pandemic and the Russia-Ukraine war, with the U.S. and Brazil identified as the predominant net transmitters of shocks. Their roles, however, fluctuate across time and quantiles, underscoring the evolving and asymmetric nature of global linkages. These insights offer guidance for investors, policymakers, and risk managers.
Full text article
References
Agarwal, A., Dhankhar, N., & Mehla, S. (2024). Interconnectedness and Spillover Effects amongst the Stock Markets of the US, China, Germany, Japan, and India using the DCC-GARCH Model and the Diebold-Yilmaz Method. Colombo Business Journal, 15(2). DOI: https://doi.org/10.4038/cbj.v15i2.197
Aharon, D. Y., Ali, S., & Naved, M. (2023). Too big to fail: The aftermath of Silicon Valley Bank (SVB) collapse and its impact on financial markets. Research in International Business and Finance, 66, 102036. DOI: https://doi.org/10.1016/j.ribaf.2023.102036
Aloui, R., Aïssa, M. S. B., & Nguyen, D. K. (2011). Global financial crisis, extreme interdependences, and contagion effects: The role of economic structure?. Journal of Banking & Finance, 35(1), 130–141. DOI: https://doi.org/10.1016/j.jbankfin.2010.07.021
Arin, K. P., Ciferri, D., & Spagnolo, N. (2008). The price of terror: The effects of terrorism on stock market returns and volatility. Economics Letters, 101(3), 164–167. DOI: https://doi.org/10.1016/j.econlet.2008.07.007
Assaf, R., Gupta, D., & Kumar, R. (2023). The price of war: Effect of the Russia-Ukraine war on the global financial market. The Journal of Economic Asymmetries, 28, e00328. DOI: https://doi.org/10.1016/j.jeca.2023.e00328
Bekaert, G., Harvey, C. R., Lundblad, C. T., & Siegel, S. (2017). Economic and Financial Integration in Europe1. Capital Markets Union and Beyond, 69. DOI: https://doi.org/10.7551/mitpress/11080.003.0006
Beraich, M., Amzile, K., Laamire, J., Zirari, O., & Fadali, M. A. (2022). Volatility spillover effects of the US, European, and Chinese financial markets in the context of the Russia–Ukraine conflict. International Journal of Financial Studies, 10(4), 95. DOI: https://doi.org/10.3390/ijfs10040095
Bhuyan, R., Robbani, M. G., Talukdar, B., & Jain, A. (2016). Information transmission and dynamics of stock price movements: An empirical analysis of BRICS and US stock markets. International Review of Economics & Finance, 46, 180–195. DOI: https://doi.org/10.1016/j.iref.2016.09.004
Boubaker, S., Goodell, J. W., Pandey, D. K., & Kumari, V. (2022). Heterogeneous impacts of wars on global equity markets: Evidence from the invasion of Ukraine. Finance Research Letters, 48, 102934. DOI: https://doi.org/10.1016/j.frl.2022.102934
Boungou, W., & Yatié, A. (2022). The impact of the Ukraine–Russia war on world stock market returns. Economics Letters, 215, 110516. DOI: https://doi.org/10.1016/j.econlet.2022.110516
Bouri, E., Lei, X., Jalkh, N., Xu, Y., & Zhang, H. (2021). Spillovers in higher moments and jumps across the US stock and strategic commodity markets. Resources Policy, 72, 102060. DOI: https://doi.org/10.1016/j.resourpol.2021.102060
Bouzgarrou, H., Ftiti, Z., Louhichi, W., & Yousfi, M. (2023). What can we learn about the market reaction to macroeconomic surprise? Evidence from the COVID-19 crisis. Research in International Business and Finance, 64, 101876. DOI: https://doi.org/10.1016/j.ribaf.2023.101876
Bouzguenda, M., & Jarboui, A. (2025). Quantile connectivity between cryptocurrency, commodities, gold, and BRICS index: what is the best investment strategy?. Eurasian Economic Review, 15(1), 125–161. DOI: https://doi.org/10.1007/s40822-024-00290-y
Bouzguenda, M., & Jarboui, A. (2025). Unravelling Interconnectedness and Dynamic Behaviour in Financial Networks: Insights from Asset Analysis. Global Business Review, 09721509251337189. DOI: https://doi.org/10.1177/09721509251337189
Bretas, V. P. G., & Alon, I. (2020). The impact of COVID‐19 on franchising in emerging markets: An example from Brazil. Global Business and Organizational Excellence, 39(6), 6–16. DOI: https://doi.org/10.1002/joe.22053
Chalissery, N., Nishad, T. M., Naushad, J. A., Tabash, M. I., & Al-Absy, M. S. M. (2024). Beneath the Surface: Disentangling the Dynamic Network of the US and BRIC Stock Markets’ Interrelations Amidst Turmoil. Risks, 12(12), 202. DOI: https://doi.org/10.3390/risks12120202
Chatziantoniou, I., Gabauer, D., & Stenfors, A. (2021). Interest rate swaps and the transmission mechanism of monetary policy: A quantile connectedness approach. Economics Letters, 204, 109891. DOI: https://doi.org/10.1016/j.econlet.2021.109891
Chen, A. H., & Siems, T. F. (2007). The effects of terrorism on global capital markets. In The Economic Analysis of Terrorism (pp. 99–122). Routledge. DOI: https://doi.org/10.4324/9780203016633-19
Dakhlaoui, I., & Aloui, C. (2016). The interactive relationship between the US economic policy uncertainty and BRIC stock markets. International Economics, 146, 141–157. DOI: https://doi.org/10.1016/j.inteco.2015.12.002
Das, S., & Roy, S. S. (2023). Following the leaders? A study of co-movement and volatility spillover in BRICS currencies. Economic Systems, 47(2), 100980. DOI: https://doi.org/10.1016/j.ecosys.2022.100980
Diamond, D. W., & Dybvig, P. H. (1983). Bank runs, deposit insurance, and liquidity. Journal of Political Economy, 91(3), 401-419. DOI: https://doi.org/10.1086/261155
Diebold, F. X., & Yilmaz, K. (2012). Better to give than to receive: Predictive directional measurement of volatility spillovers. International Journal of Forecasting, 28(1), 57-66. DOI: https://doi.org/10.1016/j.ijforecast.2011.02.006
Diebold, F. X., & Yılmaz, K. (2014). On the network topology of variance decompositions: Measuring the connectedness of financial firms. Journal of Econometrics, 182(1), 119-134 DOI: https://doi.org/10.1016/j.jeconom.2014.04.012
Dimitriou, C. J., Ewoldt, R. H., & McKinley, G. H. (2013). Describing and prescribing the constitutive response of yield stress fluids using large amplitude oscillatory shear stress (LAOStress). Journal of Rheology, 57(1), 27–70. DOI: https://doi.org/10.1122/1.4754023
Elsayed, A. H., Naifar, N., Nasreen, S., & Tiwari, A. K. (2022). Dependence structure and dynamic connectedness between green bonds and financial markets: Fresh insights from time-frequency analysis before and during the COVID-19 pandemic. Energy Economics, 107, DOI: https://doi.org/10.1016/j.eneco.2022.105842
Golitsis, P., Gkasis, P., & Bellos, S. K. (2022). Dynamic spillovers and linkages between gold, crude oil, the S&P 500, and other economic and financial variables. Evidence from the USA. The North American Journal of Economics and Finance, 63, 101785. DOI: https://doi.org/10.1016/j.najef.2022.101785
Goodell, J. W. (2020). COVID-19 and finance: Agendas for future research. Finance research letters, 35, 101512. DOI: https://doi.org/10.1016/j.frl.2020.101512
Hevia, C., & Neumeyer, P. A. (2020). A perfect storm: COVID-19 in emerging economies. COVID-19 in developing economies, 1(1), 25–37.
Jareño, F., Escribano, A., & Umar, Z. (2023). The impact of the COVID-19 Outbreak on the connectedness of the BRICS’s term structure. Humanities and Social Sciences Communications, 10(1), 1–12. h DOI: https://doi.org/10.1057/s41599-022-01500-1
Jeribi, A., Jena, S. K., & Lahiani, A. (2021). Are cryptocurrencies a backstop for the stock market in a COVID-19-led financial crisis? Evidence from the NARDL approach. International Journal of Financial Studies, 9(3), 33. DOI: https://doi.org/10.3390/ijfs9030033
Karkowska, R., & Urjasz, S. (2023). How does the Russian-Ukrainian war change connectedness and hedging opportunities? Comparison between dirty and clean energy markets versus global stock indices. Journal of International Financial Markets, Institutions and Money, 85, 101768. DOI: https://doi.org/10.1016/j.intfin.2023.101768
Kenourgios, D., Samitas, A., & Paltalidis, N. (2011). Financial crises and stock market contagion in a multivariate time-varying asymmetric framework. Journal of International Financial Markets, Institutions and Money, 21(1), 92–106. DOI: https://doi.org/10.1016/j.intfin.2010.08.005
Kumari, N., & Choi, S. H. (2022). Tumor-associated macrophages in cancer: recent advancements in cancer nanoimmunotherapies. Journal of Experimental & Clinical Cancer Research, 41(1), 68. DOI: https://doi.org/10.1186/s13046-022-02272-x
Lan, T., Shao, L., Zhang, H., & Yuan, C. (2023). The impact of the pandemic on the dynamic volatility spillover network of international stock markets. Empirical Economics, 1–30. DOI: https://doi.org/10.1007/s00181-023-02422-w
Lin, Z. C., Wong, I. A., Kou, I. E., & Zhen, X. C. (2021). Inducing well-being through staycation programs in the midst of the COVID-19 crisis. Tourism Management Perspectives, 40, 100907. DOI: https://doi.org/10.1016/j.tmp.2021.100907
Lyócsa, Š., Halousková, M., & Haugom, E. (2023). The US banking crisis in 2023: Intraday attention and price variation of banks at risk. Finance Research Letters, 57, 104209. DOI: https://doi.org/10.1016/j.frl.2023.104209
Mensi, W., Hammoudeh, S., Al-Jarrah, I. M. W., Sensoy, A., & Kang, S. H. (2017). Dynamic risk spillovers between gold, oil prices, and conventional, sustainability, and Islamic equity aggregates and sectors with portfolio implications. Energy Economics, 67, 454–475. DOI: https://doi.org/10.1016/j.eneco.2017.08.031
Mensi, W., Hammoudeh, S., Nguyen, D. K., & Kang, S. H. (2016). Global financial crisis and spillover effects among the US and BRICS stock markets. International Review of Economics & Finance, 42, 257–276. DOI: https://doi.org/10.1016/j.iref.2015.11.005
Mensi, W., Hammoudeh, S., Shahzad, S. J. H., & Shahbaz, M. (2017). Modeling systemic risk and dependence structure between oil and stock markets using a variational mode decomposition-based copula method. Journal of Banking & Finance, 75, 258–279. DOI: https://doi.org/10.1016/j.jbankfin.2016.11.017
Mizumoto, K., Kagaya, K., & Chowell, G. (2020). Effect of a wet market on coronavirus disease (COVID-19) transmission dynamics in China, 2019–2020. International journal of infectious diseases, 97, 96–101. DOI: https://doi.org/10.1016/j.ijid.2020.05.091
Naveed, M., Ali, S., Gubareva, M., & Omri, A. (2024). When giants fall: Tracing the ripple effects of Silicon Valley Bank (SVB) collapse on global financial markets. Research in International Business and Finance, 67, 102160. DOI: https://doi.org/10.1016/j.ribaf.2023.102160
Neto, D. (2025). Wall Street sneezes and global finance catches a cold: How does geopolitical risk contribute? A tale of tail. Finance Research Letters, 73, 106662. DOI: https://doi.org/10.1016/j.frl.2024.106662
Oral, F., & Özkan, İ. (2024). Measuring Connectedness and Network Analysis in Stock Markets for Developed and Developing Countries. Uluslararası İktisadi ve İdari İncelemeler Dergisi, (44), 189-206. DOI: https://doi.org/10.18092/ulikidince.1452554
Pandey, D. K., Lucey, B. M., & Kumar, S. (2023). Border disputes, conflicts, war, and financial markets research: A systematic review. Research in International Business and Finance, 101972. DOI: https://doi.org/10.1016/j.ribaf.2023.101972
Salem, S. B., & Jeribi, A. (2025). The nexus of blue economy, green finance, and energy commodities: A quantile VAR approach. Modern Finance, 3(2), 96–119. DOI: https://doi.org/10.61351/mf.v3i2.272
Shi, K. (2021). Spillovers of stock markets among the BRICS: new evidence in time and frequency domains before the outbreak of the COVID-19 pandemic. Journal of Risk and Financial Management, 14(3), 112. DOI: https://doi.org/10.3390/jrfm14030112
Spierdijk, L., & Umar, Z. (2014). Stocks for the long run? Evidence from emerging markets. Journal of International Money and Finance, 47, 217–238. DOI: https://doi.org/10.1016/j.jimonfin.2014.06.003
Syriopoulos, T., Makram, B., & Boubaker, A. (2015). Stock market volatility spillovers and portfolio hedging: BRICS and the financial crisis. International Review of Financial Analysis, 39, 7–18. DOI: https://doi.org/10.1016/j.irfa.2015.01.015
Wiseman, P., & McHugh, D. (2022). Economic dangers from Russia’s invasion ripple across the Globe. AP NEWS, 2.
World Bank. (2023). Africa’s Pulse, No. 27, April 2023: Leveraging Resource Wealth During the Low Carbon Transition.
Yousaf Imran, Larisa Yarovaya (2022). Herding behavior in the conventional cryptocurrency market, non-fungible tokens, and DeFi assets., Finance Research Letters, Volume 50, 103299, ISSN 1544-6123. DOI: https://doi.org/10.1016/j.frl.2022.103299
Yousaf, I., & Goodell, J. W. (2023). Responses of US equity market sectors to the Silicon Valley Bank implosion. Finance Research Letters, 55, 103934. DOI: https://doi.org/10.1016/j.frl.2023.103934
Zaremba, A., Umar, Z., & Mikutowski, M. (2019). Inflation hedging with commodities: A wavelet analysis of seven centuries' worth of data. Economics Letters, 181, 90-94. DOI: https://doi.org/10.1016/j.econlet.2019.05.002
Zhang, B., Li, X., & Yu, H. (2013). Has the recent financial crisis permanently changed the correlations between BRICS and developed stock markets? The North American Journal of Economics and Finance, 26, 725–738. DOI: https://doi.org/10.1016/j.najef.2013.05.003
Zhang, Y., Zhou, L., Liu, Z., & Wu, B. (2025). Spillover of fear among the US and BRICS equity markets during the COVID-19 crisis and the Russo-Ukrainian conflict. The North American Journal of Economics and Finance, 75, 102308. DOI: https://doi.org/10.1016/j.najef.2024.102308
Zhang, Y., Zhou, L., Wu, B., & Liu, F. (2024). Tail risk transmission from the United States to emerging stock Markets: Empirical evidence from multivariate quantile analysis. The North American Journal of Economics and Finance, 73, 102164. DOI: https://doi.org/10.1016/j.najef.2024.102164
Authors
Copyright (c) 2025 Mariem Bouzguenda, Anis Jarboui

This work is licensed under a Creative Commons Attribution 4.0 International License.