Modelling volatility spillovers between prices of petroleum and stock sector indices: A multivariate GARCH comparison

Miramir Bagirov (1) , Cesario Mateus (2)
(1) University of Greenwich, United Kingdom ,
(2) Aalborg University, Denmark

Abstract

This study compares four multivariate GARCH approaches in modelling bilateral return and volatility spillovers between petroleum prices and self-constructed stock sector indices of net petroleum exporters (Canada and Saudi Arabia) and net petroleum importers (the United States and China). The estimates are subsequently used to quantify optimal portfolio weights and hedge ratios and to evaluate the effectiveness of the resulting hedging strategies. The outputs point to the presence of heterogeneous volatility interdependencies, which are more evident for Canada and the United States. The optimal weight of petroleum is greater in portfolios comprising stock sector indices of Saudi Arabia and China, which also provide lower hedging costs. Time-varying conditional correlations, portfolio weights, and hedge ratios exhibit considerable variations, particularly during turbulent periods. Finally, the hedging strategies generated from the VAR-DCC-GARCH specification result in the greatest reduction, although not substantial, of risks for portfolios involving stock sector indices of all countries.

Full text article

Generated from XML file

References

Ahmad, W. (2017). On the dynamic dependence and investment performance of crude oil and clean energy stocks. Research in International Business and Finance, 42, 376-389. DOI: https://doi.org/10.1016/j.ribaf.2017.07.140

Antonakakis, N., Cunado, J., Filis, G., Gabauer, D., & Perez de Gracia, F. (2018). Oil volatility, oil and gas firms and portfolio diversification. Energy Economics, 70, 499-515. DOI: https://doi.org/10.1016/j.eneco.2018.01.023

Arouri, M. E. H., Jouini, J., & Nguyen, D. K. (2011a). Volatility spillovers between oil prices and stock sector returns: Implications for portfolio management. Journal of International Money and Finance, 30(7), 1387-1405. DOI: https://doi.org/10.1016/j.jimonfin.2011.07.008

Arouri, M. E. H., Jouini, J., & Nguyen, D. K. (2012). On the impacts of oil price fluctuations on European equity markets: Volatility spillover and hedging effectiveness. Energy Economics, 34(2), 611-617. DOI: https://doi.org/10.1016/j.eneco.2011.08.009

Arouri, M. E. H., Lahiani, A., & Nguyen, D. K. (2011c). Return and volatility transmission between world oil prices and stock markets of the GCC countries. Economic Modelling, 28(4), 1815-1825. DOI: https://doi.org/10.1016/j.econmod.2011.03.012

Arouri, M. E. H., Lahiani, A., & Nguyen, D. K. (2015). World gold prices and stock returns in China: Insights for hedging and diversification strategies. Economic Modelling, 44, 273-282. DOI: https://doi.org/10.1016/j.econmod.2014.10.030

Ashfaq, S., Tang, Y., & Maqbool, R. (2019). Volatility spillover impact of world oil prices on leading Asian energy exporting and importing economies’ stock returns. Energy, 188, 116002. DOI: https://doi.org/10.1016/j.energy.2019.116002

Bagirov, M., & Mateus, C. (2022). Petroleum prices and equity sector returns in petroleum exporting and importing countries: an analysis of volatility transmissions and hedging. Applied Economics, 54(23), 2610-2626. DOI: https://doi.org/10.1080/00036846.2021.1990846

Basher, S. A., & Sadorsky, P. (2016). Hedging emerging market stock prices with oil, gold, VIX, and bonds: A comparison between DCC, ADCC and GO-GARCH. Energy Economics, 54, 235-247. DOI: https://doi.org/10.1016/j.eneco.2015.11.022

Batten, J.A., Kinateder, H., Szilagyi, P.G., & Wagner, N.F. (2021). Hedging stocks with oil. Energy Economics, 93, 104422. DOI: https://doi.org/10.1016/j.eneco.2019.06.007

Baumeister, C., & Kilian, L. (2016). Understanding the Decline in the Price of Oil since June 2014. Journal of the Association of Environmental and Resource Economists, 3(1), 131-158. DOI: https://doi.org/10.1086/684160

Bauwens, L., Laurent, S., & Rombouts, J. V. K. (2006). Multivariate GARCH models: a survey. Journal of Applied Econometrics, 21(1), 79-109. DOI: https://doi.org/10.1002/jae.842

Belhassine, O., & Karamti, C. (2021). Volatility spillovers and hedging effectiveness between oil and stock markets: Evidence from a wavelet-based and structural breaks analysis. Energy Economics, 102, 105513. DOI: https://doi.org/10.1016/j.eneco.2021.105513

Boldanov, R., Degiannakis, S., & Filis, G. (2016). Time-varying correlation between oil and stock market volatilities: Evidence from oil-importing and oil-exporting countries. International Review of Financial Analysis, 48, 209-220. DOI: https://doi.org/10.1016/j.irfa.2016.10.002

British Petroleum. (2019). BP Statistical Review of World Energy 2019. BP, London.

Chang, C. L., McAleer, M., & Tansuchat, R. (2010). Analyzing and forecasting volatility spillovers, asymmetries and hedging in major oil markets. Energy Economics, 32(6), 1445-1455. DOI: https://doi.org/10.1016/j.eneco.2010.04.014

Chang, C. L., McAleer, M., & Tansuchat, R. (2011). Crude oil hedging strategies using dynamic multivariate GARCH. Energy Economics, 33(5), 912-923. DOI: https://doi.org/10.1016/j.eneco.2011.01.009

Degiannakis, S., Filis, G., & Arora, V. (2018). Oil prices and stock markets: A review of the theory and empirical evidence. The Energy Journal, 39(5), 85-130. DOI: https://doi.org/10.5547/01956574.39.5.sdeg

Degiannakis, S., Filis, G., & Floros, C. (2013). Oil and stock returns: Evidence from European industrial sector indices in a time-varying environment. Journal of International Financial Markets, Institutions and Money, 26, 175-191. DOI: https://doi.org/10.1016/j.intfin.2013.05.007

Engle, R. (2002). Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models. Journal of Business & Economic Statistics, 20(3), 339-350. DOI: https://doi.org/10.1198/073500102288618487

Engle, R. F., & Kroner, K. F. (1995). Multivariate Simultaneous Generalized Arch. Econometric Theory, 11(1), 122-150. DOI: https://doi.org/10.1017/S0266466600009063

Filis, G., Degiannakis, S., & Floros, C. (2011). Dynamic correlation between stock market and oil prices: The case of oil-importing and oil-exporting countries. International Review of Financial Analysis, 20(3), 152-164. DOI: https://doi.org/10.1016/j.irfa.2011.02.014

Guo, Y., & Zhao, H. (2024). Volatility spillovers between oil and coal prices and its implications for energy portfolio management in China. International Review of Economics & Finance, 89, 446-457. DOI: https://doi.org/10.1016/j.iref.2023.10.004

Hamma, W., Ghorbel, A., & Jarboui, A. (2021). Hedging Islamic and conventional stock markets with other financial assets: comparison between competing DCC models on hedging effectiveness. Journal of Asset Management, 22, 179–199. DOI: https://doi.org/10.1057/s41260-021-00208-2

Hamma, W., Jarboui, A., & Ghorbel, A. (2014). Effect of oil price volatility on Tunisian stock market at sector-level and effectiveness of hedging strategy. Procedia Economics and Finance, 13, 109-127. DOI: https://doi.org/10.1016/S2212-5671(14)00434-1

Hammoudeh, S. M., Yuan, Y., McAleer, M., & Thompson, M. A. (2010). Precious metals–exchange rate volatility transmissions and hedging strategies. International Review of Economics and Finance, 19(4), 633-647. DOI: https://doi.org/10.1016/j.iref.2010.02.003

Janda, K., Kristoufek, L., & Zhang, B. (2022). Return and volatility spillovers between Chinese and U.S. clean energy related stocks. Energy Economics, 108, 105911. DOI: https://doi.org/10.1016/j.eneco.2022.105911

Jones, C., & Kaul, G. (1996). Oil and the stock markets. Journal of Finance, 51(2), 463-491. DOI: https://doi.org/10.1111/j.1540-6261.1996.tb02691.x

Kartsonakis-Mademlis, D., & Dritsakis, N. (2020). Does the Choice of the Multivariate GARCH Model on Volatility Spillovers Matter? Evidence from Oil Prices and Stock Markets in G7 Countries. International Journal of Energy Economics and Policy, 10(5), 164-182. DOI: https://doi.org/10.32479/ijeep.9469

Kroner, K. F., & Sultan, J. (1993). Time-varying distributions and dynamic hedging with foreign currency futures. The Journal of Financial and Quantitative Analysis, 28(4), 535-551. DOI: https://doi.org/10.2307/2331164

Kroner, K.F., & Ng, V.K. (1998). Modelling asymmetric comovements of asset returns. The Review of Financial Studies, 11(4), 817–844. DOI: https://doi.org/10.1093/rfs/11.4.817

Ku, Y. H., Chen, H., & Chen K. (2007). On the application of the dynamic conditional correlation model in estimating optimal time-varying hedge ratios. Applied Economic Letters, 14(7), 503-509. DOI: https://doi.org/10.1080/13504850500447331

Lin, B., Wesseh, P. K., & Appiah, M. O. (2014). Oil price fluctuation, volatility spillover and the Ghanaian equity market: Implication for portfolio management and hedging effectiveness. Energy Economics, 42, 172-182. DOI: https://doi.org/10.1016/j.eneco.2013.12.017

Ling, S., & McAleer, M. (2003). Asymptotic theory for a vector ARMA-GARCH model. Econometric Theory, 19(2), 280-310. DOI: https://doi.org/10.1017/S0266466603192092

Liu, R., Xu., W., Zeng, H., & Zhou, X. (2023). Volatility connectedness among the Indian equity and major commodity markets under the COVID-19 scenario. Economic Analysis and Policy, 78, 1465-1481. DOI: https://doi.org/10.1016/j.eap.2023.05.020

Liu, X., Shehzad, K., Kocak, E., & Zaman, U. (2022). Dynamic correlations and portfolio implications across stock and commodity markets before and during the COVID-19 era: A key role of gold. Resources Policy, 79, 102985. DOI: https://doi.org/10.1016/j.resourpol.2022.102985

Liu, Z., Tseng, H. K., Wu, J. S., & Ding, Z. (2020). Implied volatility relationships between crude oil and the U.S. stock markets: Dynamic correlation and spillover effects. Resources Policy, 66, 101637. DOI: https://doi.org/10.1016/j.resourpol.2020.101637

Maghyereh, A. I, Awartani, B., & Tziogkidis, P. (2017). Volatility spillovers and cross-hedging between gold, oil and equities: Evidence from the Gulf Cooperation Council countries. Energy Economics, 68, 440-453. DOI: https://doi.org/10.1016/j.eneco.2017.10.025

Malik, F., & Ewing, B. T. (2009). Volatility transmission between oil prices and equity sector returns. International Review of Financial Analysis, 18(3), 95-100. DOI: https://doi.org/10.1016/j.irfa.2009.03.003

Malik, F., & Hammoudeh, S. (2007). Shock and volatility transmission in the oil, US and Gulf equity markets. International Review of Economics and Finance, 16(3), 357-368. DOI: https://doi.org/10.1016/j.iref.2005.05.005

McAleer, M., Hoti, S., & Chan, F. (2009). Structure and asymptotic theory for multivariate asymmetric conditional volatility. Econometric Reviews, 28(5), 422-440. DOI: https://doi.org/10.1080/07474930802467217

Mensi, W., Beljid, M., Boubaker, A., & Managi, S. (2013). Correlations and volatility spillovers across commodity and stock markets: Linking energies, food, and gold. Economic Modelling, 32, 15-22. DOI: https://doi.org/10.1016/j.econmod.2013.01.023

Mensi, W., Hammoudeh, S., & Kang, S. H. (2015). Precious metals, cereal, oil and stock market linkages and portfolio risk management: Evidence from Saudi Arabia. Economic Modelling, 51, 340-358. DOI: https://doi.org/10.1016/j.econmod.2015.08.005

Ramesh, S., Low, R. K. Y., & Faff, R. (2025). Modelling time-varying volatility spillovers across crises: Evidence from major commodity futures and the US stock market. Energy Economics, 143, 108225. DOI: https://doi.org/10.1016/j.eneco.2025.108225

Sadorsky, P. (2012). Correlations and volatility spillovers between oil prices and the stock prices of clean energy and technology companies. Energy Economics, 34(1), 248-255. DOI: https://doi.org/10.1016/j.eneco.2011.03.006

Sadorsky, P. (2014a). Modeling volatility and correlations between emerging market stock prices and the prices of copper, oil and wheat. Energy Economics, 43, 72-81. DOI: https://doi.org/10.1016/j.eneco.2014.02.014

Sadorsky, P. (2014b). Modeling volatility and conditional correlations between socially responsible investments, gold and oil. Economic Modelling, 38, 609-618. DOI: https://doi.org/10.1016/j.econmod.2014.02.013

Salisu, A. A., & Oloko, T. F. (2015). Modeling oil price–US stock nexus: A VARMA–BEKK–AGARCH approach. Energy Economics, 50, 1-12. DOI: https://doi.org/10.1016/j.eneco.2015.03.031

Sarwar, S., Khalfaoui, R., Waheed, R, & Dastgerdi, H. G. (2019). Volatility spillovers and hedging: Evidence from Asian oil-importing countries. Resources Policy, 61, 479-488. DOI: https://doi.org/10.1016/j.resourpol.2018.04.010

Silvennoinen, A, & Terasvirta, T. (2009). Multivariate GARCH Models. In Mikosch T., Kreiss J.P., Davis R., Andersen T. (eds) Handbook of Financial Time Series. Berlin, Heidelberg: Springer, pp. 201-229. DOI: https://doi.org/10.1007/978-3-540-71297-8_9

Silvennoinen, A., & Thorp, S. (2013). Financialization, crisis and commodity correlation dynamics. Journal of International Financial Markets, Institutions and Money, 24, 42-65. DOI: https://doi.org/10.1016/j.intfin.2012.11.007

Tang, K., & Xiong, W. (2012). Index investment and the financialization of commodities. Financial Analysts Journal, 68(6), 54-74. DOI: https://doi.org/10.2469/faj.v68.n6.5

Wang, W., Moffatt, P. G., Zhang, Z., & Raza, M. Y. (2025). Volatility spillovers and conditional correlations between oil, renewables and stock markets: A multivariate GARCH-in-mean analysis. Energy Strategy Reviews, 57, 101639. DOI: https://doi.org/10.1016/j.esr.2025.101639

Wang, Y., & Liu, L. (2016). Crude oil and world stock markets: volatility spillovers, dynamic correlations, and hedging. Empirical Economics, 50, 1481-1509. DOI: https://doi.org/10.1007/s00181-015-0983-2

Yadav, M. P., Sharma, S., Aggarwal, V., & Bhardwaj, I. (2022). Correlations and volatility spillover from China to Asian and Latin American Countries: Identifying diversification and hedging opportunities. Cogent Economics & Finance, 10(1), 2132634. DOI: https://doi.org/10.1080/23322039.2022.2132634

Yousaf, I., & Hassan, A. (2019). Linkages between crude oil and emerging Asian stock markets: New evidence from the Chinese stock market crash. Finance Research Letters, 31, 207-217. DOI: https://doi.org/10.1016/j.frl.2019.08.023

Yousaf, I., Beljid, M., Chaibi, A., & AL Ajlouni, A. (2022). Do volatility spillover and hedging among GCC stock markets and global factors vary from normal to turbulent periods? Evidence from the global financial crisis and Covid-19 pandemic crisis. Pacific-Basin Finance Journal, 73, 101764. DOI: https://doi.org/10.1016/j.pacfin.2022.101764

Zhang, Y. J., Chevallier, J., & Guesmi, K. (2017). “De-financialization” of commodities? Evidence from stock, crude oil and natural gas markets. Energy Economics, 68, 228-239. DOI: https://doi.org/10.1016/j.eneco.2017.09.024

Zhao, W., & Wang, Y. D. (2022). On the time-varying correlations between oil-, gold-, and stock markets: The heterogeneous roles of policy uncertainty in the US and China. Petroleum Science, 19(3), 1420-1432. DOI: https://doi.org/10.1016/j.petsci.2021.11.015

Zhong, Y., & Liu, J. (2021). Correlations and volatility spillovers between China and Southeast Asian stock markets. The Quarterly Review of Economics and Finance, 81, 57-69. DOI: https://doi.org/10.1016/j.qref.2021.04.001

Authors

Miramir Bagirov
miramir.bagirov@outlook.com (Primary Contact)
Cesario Mateus
Bagirov, M., & Mateus, C. (2025). Modelling volatility spillovers between prices of petroleum and stock sector indices: A multivariate GARCH comparison. Modern Finance, 3(3), 66–111. https://doi.org/10.61351/mf.v3i3.318

Article Details

No Related Submission Found