Modelling volatility spillovers between prices of petroleum and stock sector indices: A multivariate GARCH comparison
Abstract
This study compares four multivariate GARCH approaches in modelling bilateral return and volatility spillovers between petroleum prices and self-constructed stock sector indices of net petroleum exporters (Canada and Saudi Arabia) and net petroleum importers (the United States and China). The estimates are subsequently used to quantify optimal portfolio weights and hedge ratios and to evaluate the effectiveness of the resulting hedging strategies. The outputs point to the presence of heterogeneous volatility interdependencies, which are more evident for Canada and the United States. The optimal weight of petroleum is greater in portfolios comprising stock sector indices of Saudi Arabia and China, which also provide lower hedging costs. Time-varying conditional correlations, portfolio weights, and hedge ratios exhibit considerable variations, particularly during turbulent periods. Finally, the hedging strategies generated from the VAR-DCC-GARCH specification result in the greatest reduction, although not substantial, of risks for portfolios involving stock sector indices of all countries.
Full text article
References
Ahmad, W. (2017). On the dynamic dependence and investment performance of crude oil and clean energy stocks. Research in International Business and Finance, 42, 376-389. DOI: https://doi.org/10.1016/j.ribaf.2017.07.140
Antonakakis, N., Cunado, J., Filis, G., Gabauer, D., & Perez de Gracia, F. (2018). Oil volatility, oil and gas firms and portfolio diversification. Energy Economics, 70, 499-515. DOI: https://doi.org/10.1016/j.eneco.2018.01.023
Arouri, M. E. H., Jouini, J., & Nguyen, D. K. (2011a). Volatility spillovers between oil prices and stock sector returns: Implications for portfolio management. Journal of International Money and Finance, 30(7), 1387-1405. DOI: https://doi.org/10.1016/j.jimonfin.2011.07.008
Arouri, M. E. H., Jouini, J., & Nguyen, D. K. (2012). On the impacts of oil price fluctuations on European equity markets: Volatility spillover and hedging effectiveness. Energy Economics, 34(2), 611-617. DOI: https://doi.org/10.1016/j.eneco.2011.08.009
Arouri, M. E. H., Lahiani, A., & Nguyen, D. K. (2011c). Return and volatility transmission between world oil prices and stock markets of the GCC countries. Economic Modelling, 28(4), 1815-1825. DOI: https://doi.org/10.1016/j.econmod.2011.03.012
Arouri, M. E. H., Lahiani, A., & Nguyen, D. K. (2015). World gold prices and stock returns in China: Insights for hedging and diversification strategies. Economic Modelling, 44, 273-282. DOI: https://doi.org/10.1016/j.econmod.2014.10.030
Ashfaq, S., Tang, Y., & Maqbool, R. (2019). Volatility spillover impact of world oil prices on leading Asian energy exporting and importing economies’ stock returns. Energy, 188, 116002. DOI: https://doi.org/10.1016/j.energy.2019.116002
Bagirov, M., & Mateus, C. (2022). Petroleum prices and equity sector returns in petroleum exporting and importing countries: an analysis of volatility transmissions and hedging. Applied Economics, 54(23), 2610-2626. DOI: https://doi.org/10.1080/00036846.2021.1990846
Basher, S. A., & Sadorsky, P. (2016). Hedging emerging market stock prices with oil, gold, VIX, and bonds: A comparison between DCC, ADCC and GO-GARCH. Energy Economics, 54, 235-247. DOI: https://doi.org/10.1016/j.eneco.2015.11.022
Batten, J.A., Kinateder, H., Szilagyi, P.G., & Wagner, N.F. (2021). Hedging stocks with oil. Energy Economics, 93, 104422. DOI: https://doi.org/10.1016/j.eneco.2019.06.007
Baumeister, C., & Kilian, L. (2016). Understanding the Decline in the Price of Oil since June 2014. Journal of the Association of Environmental and Resource Economists, 3(1), 131-158. DOI: https://doi.org/10.1086/684160
Bauwens, L., Laurent, S., & Rombouts, J. V. K. (2006). Multivariate GARCH models: a survey. Journal of Applied Econometrics, 21(1), 79-109. DOI: https://doi.org/10.1002/jae.842
Belhassine, O., & Karamti, C. (2021). Volatility spillovers and hedging effectiveness between oil and stock markets: Evidence from a wavelet-based and structural breaks analysis. Energy Economics, 102, 105513. DOI: https://doi.org/10.1016/j.eneco.2021.105513
Boldanov, R., Degiannakis, S., & Filis, G. (2016). Time-varying correlation between oil and stock market volatilities: Evidence from oil-importing and oil-exporting countries. International Review of Financial Analysis, 48, 209-220. DOI: https://doi.org/10.1016/j.irfa.2016.10.002
British Petroleum. (2019). BP Statistical Review of World Energy 2019. BP, London.
Chang, C. L., McAleer, M., & Tansuchat, R. (2010). Analyzing and forecasting volatility spillovers, asymmetries and hedging in major oil markets. Energy Economics, 32(6), 1445-1455. DOI: https://doi.org/10.1016/j.eneco.2010.04.014
Chang, C. L., McAleer, M., & Tansuchat, R. (2011). Crude oil hedging strategies using dynamic multivariate GARCH. Energy Economics, 33(5), 912-923. DOI: https://doi.org/10.1016/j.eneco.2011.01.009
Degiannakis, S., Filis, G., & Arora, V. (2018). Oil prices and stock markets: A review of the theory and empirical evidence. The Energy Journal, 39(5), 85-130. DOI: https://doi.org/10.5547/01956574.39.5.sdeg
Degiannakis, S., Filis, G., & Floros, C. (2013). Oil and stock returns: Evidence from European industrial sector indices in a time-varying environment. Journal of International Financial Markets, Institutions and Money, 26, 175-191. DOI: https://doi.org/10.1016/j.intfin.2013.05.007
Engle, R. (2002). Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models. Journal of Business & Economic Statistics, 20(3), 339-350. DOI: https://doi.org/10.1198/073500102288618487
Engle, R. F., & Kroner, K. F. (1995). Multivariate Simultaneous Generalized Arch. Econometric Theory, 11(1), 122-150. DOI: https://doi.org/10.1017/S0266466600009063
Filis, G., Degiannakis, S., & Floros, C. (2011). Dynamic correlation between stock market and oil prices: The case of oil-importing and oil-exporting countries. International Review of Financial Analysis, 20(3), 152-164. DOI: https://doi.org/10.1016/j.irfa.2011.02.014
Guo, Y., & Zhao, H. (2024). Volatility spillovers between oil and coal prices and its implications for energy portfolio management in China. International Review of Economics & Finance, 89, 446-457. DOI: https://doi.org/10.1016/j.iref.2023.10.004
Hamma, W., Ghorbel, A., & Jarboui, A. (2021). Hedging Islamic and conventional stock markets with other financial assets: comparison between competing DCC models on hedging effectiveness. Journal of Asset Management, 22, 179–199. DOI: https://doi.org/10.1057/s41260-021-00208-2
Hamma, W., Jarboui, A., & Ghorbel, A. (2014). Effect of oil price volatility on Tunisian stock market at sector-level and effectiveness of hedging strategy. Procedia Economics and Finance, 13, 109-127. DOI: https://doi.org/10.1016/S2212-5671(14)00434-1
Hammoudeh, S. M., Yuan, Y., McAleer, M., & Thompson, M. A. (2010). Precious metals–exchange rate volatility transmissions and hedging strategies. International Review of Economics and Finance, 19(4), 633-647. DOI: https://doi.org/10.1016/j.iref.2010.02.003
Janda, K., Kristoufek, L., & Zhang, B. (2022). Return and volatility spillovers between Chinese and U.S. clean energy related stocks. Energy Economics, 108, 105911. DOI: https://doi.org/10.1016/j.eneco.2022.105911
Jones, C., & Kaul, G. (1996). Oil and the stock markets. Journal of Finance, 51(2), 463-491. DOI: https://doi.org/10.1111/j.1540-6261.1996.tb02691.x
Kartsonakis-Mademlis, D., & Dritsakis, N. (2020). Does the Choice of the Multivariate GARCH Model on Volatility Spillovers Matter? Evidence from Oil Prices and Stock Markets in G7 Countries. International Journal of Energy Economics and Policy, 10(5), 164-182. DOI: https://doi.org/10.32479/ijeep.9469
Kroner, K. F., & Sultan, J. (1993). Time-varying distributions and dynamic hedging with foreign currency futures. The Journal of Financial and Quantitative Analysis, 28(4), 535-551. DOI: https://doi.org/10.2307/2331164
Kroner, K.F., & Ng, V.K. (1998). Modelling asymmetric comovements of asset returns. The Review of Financial Studies, 11(4), 817–844. DOI: https://doi.org/10.1093/rfs/11.4.817
Ku, Y. H., Chen, H., & Chen K. (2007). On the application of the dynamic conditional correlation model in estimating optimal time-varying hedge ratios. Applied Economic Letters, 14(7), 503-509. DOI: https://doi.org/10.1080/13504850500447331
Lin, B., Wesseh, P. K., & Appiah, M. O. (2014). Oil price fluctuation, volatility spillover and the Ghanaian equity market: Implication for portfolio management and hedging effectiveness. Energy Economics, 42, 172-182. DOI: https://doi.org/10.1016/j.eneco.2013.12.017
Ling, S., & McAleer, M. (2003). Asymptotic theory for a vector ARMA-GARCH model. Econometric Theory, 19(2), 280-310. DOI: https://doi.org/10.1017/S0266466603192092
Liu, R., Xu., W., Zeng, H., & Zhou, X. (2023). Volatility connectedness among the Indian equity and major commodity markets under the COVID-19 scenario. Economic Analysis and Policy, 78, 1465-1481. DOI: https://doi.org/10.1016/j.eap.2023.05.020
Liu, X., Shehzad, K., Kocak, E., & Zaman, U. (2022). Dynamic correlations and portfolio implications across stock and commodity markets before and during the COVID-19 era: A key role of gold. Resources Policy, 79, 102985. DOI: https://doi.org/10.1016/j.resourpol.2022.102985
Liu, Z., Tseng, H. K., Wu, J. S., & Ding, Z. (2020). Implied volatility relationships between crude oil and the U.S. stock markets: Dynamic correlation and spillover effects. Resources Policy, 66, 101637. DOI: https://doi.org/10.1016/j.resourpol.2020.101637
Maghyereh, A. I, Awartani, B., & Tziogkidis, P. (2017). Volatility spillovers and cross-hedging between gold, oil and equities: Evidence from the Gulf Cooperation Council countries. Energy Economics, 68, 440-453. DOI: https://doi.org/10.1016/j.eneco.2017.10.025
Malik, F., & Ewing, B. T. (2009). Volatility transmission between oil prices and equity sector returns. International Review of Financial Analysis, 18(3), 95-100. DOI: https://doi.org/10.1016/j.irfa.2009.03.003
Malik, F., & Hammoudeh, S. (2007). Shock and volatility transmission in the oil, US and Gulf equity markets. International Review of Economics and Finance, 16(3), 357-368. DOI: https://doi.org/10.1016/j.iref.2005.05.005
McAleer, M., Hoti, S., & Chan, F. (2009). Structure and asymptotic theory for multivariate asymmetric conditional volatility. Econometric Reviews, 28(5), 422-440. DOI: https://doi.org/10.1080/07474930802467217
Mensi, W., Beljid, M., Boubaker, A., & Managi, S. (2013). Correlations and volatility spillovers across commodity and stock markets: Linking energies, food, and gold. Economic Modelling, 32, 15-22. DOI: https://doi.org/10.1016/j.econmod.2013.01.023
Mensi, W., Hammoudeh, S., & Kang, S. H. (2015). Precious metals, cereal, oil and stock market linkages and portfolio risk management: Evidence from Saudi Arabia. Economic Modelling, 51, 340-358. DOI: https://doi.org/10.1016/j.econmod.2015.08.005
Ramesh, S., Low, R. K. Y., & Faff, R. (2025). Modelling time-varying volatility spillovers across crises: Evidence from major commodity futures and the US stock market. Energy Economics, 143, 108225. DOI: https://doi.org/10.1016/j.eneco.2025.108225
Sadorsky, P. (2012). Correlations and volatility spillovers between oil prices and the stock prices of clean energy and technology companies. Energy Economics, 34(1), 248-255. DOI: https://doi.org/10.1016/j.eneco.2011.03.006
Sadorsky, P. (2014a). Modeling volatility and correlations between emerging market stock prices and the prices of copper, oil and wheat. Energy Economics, 43, 72-81. DOI: https://doi.org/10.1016/j.eneco.2014.02.014
Sadorsky, P. (2014b). Modeling volatility and conditional correlations between socially responsible investments, gold and oil. Economic Modelling, 38, 609-618. DOI: https://doi.org/10.1016/j.econmod.2014.02.013
Salisu, A. A., & Oloko, T. F. (2015). Modeling oil price–US stock nexus: A VARMA–BEKK–AGARCH approach. Energy Economics, 50, 1-12. DOI: https://doi.org/10.1016/j.eneco.2015.03.031
Sarwar, S., Khalfaoui, R., Waheed, R, & Dastgerdi, H. G. (2019). Volatility spillovers and hedging: Evidence from Asian oil-importing countries. Resources Policy, 61, 479-488. DOI: https://doi.org/10.1016/j.resourpol.2018.04.010
Silvennoinen, A, & Terasvirta, T. (2009). Multivariate GARCH Models. In Mikosch T., Kreiss J.P., Davis R., Andersen T. (eds) Handbook of Financial Time Series. Berlin, Heidelberg: Springer, pp. 201-229. DOI: https://doi.org/10.1007/978-3-540-71297-8_9
Silvennoinen, A., & Thorp, S. (2013). Financialization, crisis and commodity correlation dynamics. Journal of International Financial Markets, Institutions and Money, 24, 42-65. DOI: https://doi.org/10.1016/j.intfin.2012.11.007
Tang, K., & Xiong, W. (2012). Index investment and the financialization of commodities. Financial Analysts Journal, 68(6), 54-74. DOI: https://doi.org/10.2469/faj.v68.n6.5
Wang, W., Moffatt, P. G., Zhang, Z., & Raza, M. Y. (2025). Volatility spillovers and conditional correlations between oil, renewables and stock markets: A multivariate GARCH-in-mean analysis. Energy Strategy Reviews, 57, 101639. DOI: https://doi.org/10.1016/j.esr.2025.101639
Wang, Y., & Liu, L. (2016). Crude oil and world stock markets: volatility spillovers, dynamic correlations, and hedging. Empirical Economics, 50, 1481-1509. DOI: https://doi.org/10.1007/s00181-015-0983-2
Yadav, M. P., Sharma, S., Aggarwal, V., & Bhardwaj, I. (2022). Correlations and volatility spillover from China to Asian and Latin American Countries: Identifying diversification and hedging opportunities. Cogent Economics & Finance, 10(1), 2132634. DOI: https://doi.org/10.1080/23322039.2022.2132634
Yousaf, I., & Hassan, A. (2019). Linkages between crude oil and emerging Asian stock markets: New evidence from the Chinese stock market crash. Finance Research Letters, 31, 207-217. DOI: https://doi.org/10.1016/j.frl.2019.08.023
Yousaf, I., Beljid, M., Chaibi, A., & AL Ajlouni, A. (2022). Do volatility spillover and hedging among GCC stock markets and global factors vary from normal to turbulent periods? Evidence from the global financial crisis and Covid-19 pandemic crisis. Pacific-Basin Finance Journal, 73, 101764. DOI: https://doi.org/10.1016/j.pacfin.2022.101764
Zhang, Y. J., Chevallier, J., & Guesmi, K. (2017). “De-financialization” of commodities? Evidence from stock, crude oil and natural gas markets. Energy Economics, 68, 228-239. DOI: https://doi.org/10.1016/j.eneco.2017.09.024
Zhao, W., & Wang, Y. D. (2022). On the time-varying correlations between oil-, gold-, and stock markets: The heterogeneous roles of policy uncertainty in the US and China. Petroleum Science, 19(3), 1420-1432. DOI: https://doi.org/10.1016/j.petsci.2021.11.015
Zhong, Y., & Liu, J. (2021). Correlations and volatility spillovers between China and Southeast Asian stock markets. The Quarterly Review of Economics and Finance, 81, 57-69. DOI: https://doi.org/10.1016/j.qref.2021.04.001
Authors
Copyright (c) 2025 Miramir Bagirov, Cesario Mateus

This work is licensed under a Creative Commons Attribution 4.0 International License.