Unleashing the power of artificial intelligence in Islamic banking: A case study of Bank Syariah Indonesia (BSI)
Abstract
This research examines the challenges and opportunities of AI integration in Islamic banks through a case study of Bank Syariah Indonesia. A qualitative method was applied using an interview approach. Four experts from the IT division of Bank Syariah Indonesia were interviewed. The results suggest that AI applications offer potential benefits such as automation, improved decision-making and efficiency, customer recommendations, and enhanced customer experience. However, the challenges of AI integration include implementation costs, cyber security risks, Shariah compliance, and ethical issues. The research recommends that stakeholders in Islamic banks invest more in cybersecurity and educate their customers about the importance and usage of AI technology. Additionally, the research suggests that the government implements policies related to the ethical regulation of AI technology. Future research should provide comparative analysis and use a mixed-method approach to better understand the challenges and opportunities of AI integration in Islamic banks.
Full text article
References
Alam, N., Gupta, L., & Zameni, A. (2019). Fintech and Islamic Finance. In Springer eBooks. https://doi.org/10.1007/978-3-030-24666-2
Ali, H., Abdullah, R., & Zaini, M. Z. (2019). Fintech and its potential impact on Islamic banking and finance industry: A case study of Brunei Darussalam and Malaysia. International Journal of Islamic Economics and Finance, 2(1). https://doi.org/10.18196/ijief.2116
Ali, M., Basahr, A., Rabbani, M. R., & Abdulla, Y. (2020). We are transforming Business Decision Making with the Internet of Things (IoT) and Machine Learning (ML). 2020 International Conference on Decision Aid Sciences and Application (DASA). https://doi.org/10.1109/dasa51403.2020.9317174
Annual Report BSI. (2022). Annual Report 2022 PT BANK SYARIAH INDONESIA Tbk. In PT BANK SYARIAH INDONESIA Tbk. https://ir.bankbsi.co.id/annual_reports.html
Aysan, A. F., Belatik, A., Unal, I. M., & Ettaai, R. (2022). Fintech strategies of Islamic banks: A global empirical analysis. FinTech, 1(2), 206–215. https://doi.org/10.3390/fintech1020016
Aziz, L. A., & Andriansyah, Y. (2023). The Role Artificial Intelligence in Modern Banking: An Exploration of AI-Driven Approaches for Enhanced. . . ResearchGate. https://www.researchgate.net/publication/373489510_The_Role_Artificial_Intelligence_in_Modern_Banking_An_Exploration_of_AI-Driven_Approaches_for_Enhanced_Fraud_Prevention_Risk_Management_and_Regulatory_Compliance
Benzaghta, M. A., Elwalda, A., Mousa, M. M., Erkan, İ., & Rahman, M. (2021). SWOT analysis applications: An integrative literature review. Journal of Global Business Insights, 6(1), 55–73. https://doi.org/10.5038/2640-6489.6.1.1148
Bhagat, R., Chauhan, V., & Bhagat, P. (2022). Investigating the impact of artificial intelligence on consumer’s purchase intention in e-retailing. Foresight, 25(2), 249–263. https://doi.org/10.1108/fs-10-2021-0218
Bhardwaj, A., Alshehri, M. D., Kaushik, K., Alyamani, H. J., & Kumar, M. (2022). (Retracted) Secure framework against cyber attacks on cyber-physical robotic systems. Journal of Electronic Imaging, 31(06). https://doi.org/10.1117/1.jei.31.6.061802
Campbell, S., Greenwood, M., Prior, S., Shearer, T., Walkem, K., Young, S., Bywaters, D., & Walker, K. (2020). Purposive sampling: complex or simple? Research case examples. Journal of Research in Nursing, 25(8), 652–661. https://doi.org/10.1177/1744987120927206
Chithaluru, P., Al‐Turjman, F., Kumar, M., & Stephan, T. (2023). Computational-intelligence-inspired adaptive opportunistic clustering approach for industrial IoT networks. IEEE Internet of Things Journal, 10(9), 7884–7892. https://doi.org/10.1109/jiot.2022.3231605
Consultants M. (2022). Benefits of artificial intelligence in the banking sector. https://www.millenniumci.com/benefits-of-artificial-intelligence-in-the-banking-sector
Da Silva, R. (2021). Calls for behavioural biometrics as bank fraud soars. Biometric Technology Today, 2021(9), 7–9. https://doi.org/10.1016/s0969-4765(21)00095-3
Digalaki, E. (2022, February 7). The impact of artificial intelligence in the banking sector & how AI is being used in 2022. Business Insider. https://www.businessinsider.com/ai-in-banking-report
Doumpos, M., Zopounidis, C., Gounopoulos, D., Platanakis, E., & Zhang, W. (2023). Operational research and artificial intelligence methods in banking. European Journal of Operational Research, 306(1), 1–16. https://doi.org/10.1016/j.ejor.2022.04.027
Elrefaey, O., Ahmed, S., Ahmad, I., & El-Sayegh, S. M. (2022). Impacts of COVID-19 on the use of digital technology in construction projects in the UAE. Buildings, 12(4), 489. https://doi.org/10.3390/buildings12040489
Eriksson, T., Bigi, A., & Bonera, M. (2020). Think with me, or think for me? On the future role of artificial intelligence in marketing strategy formulation. The TQM Journal, 32(4), 795–814. https://doi.org/10.1108/tqm-12-2019-0303
Fitchrating Report. (2023). Indonesian Islamic Banks Dashboard 2023. In https://www.fitchratings.com/. https://www.fitchratings.com/research/islamic-finance/indonesian-islamic-banks-dashboard-2023-13-02-2023#:~:text=Market%20Profile%3A%20Financing%20growth%20surged%20by%2018.8%25%20in,which%20contributes%2051%25%20to%20the%20Shariah-financing%20market%20share.
Goodell, J. W., Kumar, S., Lim, W. M., & Pattnaik, D. (2021). Artificial intelligence and machine learning in finance: Identifying foundations, themes, and research clusters from bibliometric analysis. Journal of Behavioral and Experimental Finance, 32, 100577. https://doi.org/10.1016/j.jbef.2021.100577
Gürel, Ş., & Tat, M. (2017). SWOT analysis: A theoretical review. The Journal of International Social Research, 10(51), 994–1006. https://doi.org/10.17719/jisr.2017.1832
Haleem, A., Javaid, M., Qadri, M. A., Singh, R. P., & Suman, R. (2022). Artificial intelligence (AI) applications for marketing: A literature-based study. International Journal of Intelligent Networks, 3, 119–132. https://doi.org/10.1016/j.ijin.2022.08.005
Hamadou, I. (2022). Islamic Banking System and Economic Growth: Exploration of D-8 countries. Muslim Business and Economic Review, 1(1), 131–152. https://doi.org/10.56529/mber.v1i1.32
Hamadou, I., & Ashraf, N. (2022). Banking Risk, Competition and Performance of Indonesian Islamic Banks during 2010-2020. ResearchGate. https://www.researchgate.net/publication/366409079_Banking_Risk_Competition_and_Performance_of_Indonesian_Islamic_Banks_during_2010-2020
Hariguna, T., & Ruangkanjanases, A. (2024). Assessing the impact of artificial intelligence on customer performance: A quantitative study using partial least squares methodology. Data Science and Management. https://doi.org/10.1016/j.dsm.2024.01.001
Hasan, R., Hassan, M. K., & Aliyu, S. (2020). Fintech and Islamic Finance: Literature Review and Research Agenda. International Journal of Islamic Economics and Finance (IJIEF), 3(1), 75-94. https://doi.org/10.18196/ijief.2122
Hasan, Z. (2019). Market share Islamic banking in Indonesia. IQTISHADUNA: Jurnal Ilmiah Ekonomi Kita, 124-137.
Hmoud, H. Y., Shishan, F., Qasem, Z., & Bazi, S. (2023). The effect of Arabic language type on banking chatbots adoption. Heliyon, 9(10), e20686. https://doi.org/10.1016/j.heliyon.2023.e20686
Huang, S. Y. B., & Lee, C. (2022). Predicting continuance intention to fintech chatbot. Computers in Human Behavior, 129, 107027. https://doi.org/10.1016/j.chb.2021.107027
Jamshidi, D., & Hussin, N. (2018). An integrated adoption model for Islamic credit card: PLS-SEM based approach. Journal of Islamic Accounting and Business Research, 9(3), 308–335. https://doi.org/10.1108/jiabr-07-2015-0032
Jallow, M. S. (2023). The impact of Macroeconomic Variables and Bank internal factors on Islamic Banking performance during COVID-19 in Indonesia. Journal of Islamic Economics and Philanthropy, 6, 200–216.
Kaplan, A. (2021). Artificial intelligence, marketing, and the Fourth Industrial Revolution. In Advances in marketing, customer relationship management, and e-services book series (pp. 1–13). https://doi.org/10.4018/978-1-7998-5077-9.ch001
Karbhari, Y., Alam, M. K., & Rahman, M. M. (2020). Relevance of the application of institutional theory in Shariah governance of Islamic banks. PSU Research Review, 5(1), 1–15. https://doi.org/10.1108/prr-05-2020-0015
Karthik, R., & Ganapathy, S. (2021). A fuzzy recommendation system for predicting the customers interests using sentiment analysis and ontology in e-commerce. Applied Soft Computing, 108, 107396. https://doi.org/10.1016/j.asoc.2021.107396
Kaur, R., Gabrijelčič, D., & Klobučar, T. (2023). Artificial intelligence for cybersecurity: Literature review and future research directions. Information Fusion, 97, 101804. https://doi.org/10.1016/j.inffus.2023.101804
Khan, S. N., & Rabbani, M. R. (2021). Artificial Intelligence and NLP -Based chatbot for Islamic banking and finance. International Journal of Information Retrieval Research, 11(3), 65–77. https://doi.org/10.4018/ijirr.2021070105
Khan, S., & Rabbani, M. R. (2020). Chatbot as Islamic Finance Expert (CaIFE). International Conference on Computational Linguistics and Natural Language Processing (CLNLP 2020). https://doi.org/10.1145/3440084.3441213
Khogali, H. O., & Mekid, S. (2023). The blended future of automation and AI: Examining some long-term societal and ethical impact features. Technology in Society, 73, 102232. https://doi.org/10.1016/j.techsoc.2023.102232
Königstorfer, F., & Thalmann, S. (2020). Applications of Artificial Intelligence in commercial banks – A research agenda for behavioral finance. Journal of Behavioral and Experimental Finance, 27, 100352. https://doi.org/10.1016/j.jbef.2020.100352
Lammers, J. C., & Garcia, M. A. (2017). Institutional theory approaches. The International Encyclopedia of Organizational Communication, 1–10. https://doi.org/10.1002/9781118955567.wbieoc113
Lin, H. (2014). Understanding the determinants of electronic supply chain management system adoption: Using the technology–organization–environment framework. Technological Forecasting and Social Change, 86, 80–92. https://doi.org/10.1016/j.techfore.2013.09.001
Maja, M. M., & Letaba, P. (2022). Towards a data-driven technology roadmap for the bank of the future: Exploring big data analytics to support technology road mapping. Social Sciences & Humanities Open, 6(1), 100270. https://doi.org/10.1016/j.ssaho.2022.100270
Mariani, M. M., Perez‐Vega, R., & Wirtz, J. (2021). AI in marketing, consumer research and psychology: A systematic literature review and research agenda. Psychology & Marketing, 39(4), 755–776. https://doi.org/10.1002/mar.21619
Marlina, L., Rusydiana, A. S., Hidayat, P., & Firdaus, N. (2021). Twenty years of Islamic banking in Indonesia. digital commons.
Mogaji, E., Balakrishnan, J., Nwoba, A. C., & Nguyen, N. P. (2021). Emerging-market consumers’ interactions with banking chatbots. Telematics and Informatics, 65, 101711. https://doi.org/10.1016/j.tele.2021.101711
Narayan, P. K., & Phan, D. H. B. (2019). A survey of Islamic banking and finance literature: Issues, challenges and future directions. Pacific-Basin Finance Journal, 53, 484–496. https://doi.org/10.1016/j.pacfin.2017.06.006
Noreen, U., Shafique, A., Ahmed, Z., & Ashfaq, M. (2023). Banking 4.0: Artificial Intelligence (AI) in Banking Industry & Consumer’s Perspective. Sustainability, 15(4), 3682. https://doi.org/10.3390/su15043682
Northey, G., Hunter, V., Mulcahy, R., Choong, K., & Mehmet, M. (2022). Man vs machine: how artificial intelligence in banking influences consumer belief in financial advice. International Journal of Bank Marketing, 40(6), 1182–1199. https://doi.org/10.1108/ijbm-09-2021-0439
Paschen, J., Kietzmann, J., & Kietzmann, T. C. (2019). Artificial intelligence (AI) and its implications for market knowledge in B2B marketing. Journal of Business & Industrial Marketing, 34(7), 1410–1419. https://doi.org/10.1108/jbim-10-2018-0295
Patel, R., Migliavacca, M., & Oriani, M. E. (2022). Blockchain in banking and finance: A bibliometric review. Research in International Business and Finance, 62, 101718. https://doi.org/10.1016/j.ribaf.2022.101718
Rabbani, M. R., Hassan, M. K., Khan, S., & Ali, M. (2021). Artificial intelligence and Natural language processing (NLP) based FinTech model of Zakat for poverty alleviation and sustainable development for Muslims in India. In Routledge eBooks (pp. 107–117). https://doi.org/10.4324/9781003121718-10
Rahim, S. R. M., Mohamad, Z. Z., Bakar, J. A., Mohsin, F. H., & Isa, N. M. (2018). Artificial intelligence, smart contract and Islamic Finance. Asian Social Science, 14(2), 145. https://doi.org/10.5539/ass.v14n2p145
Rodrigues, A. R. D., Ferreira, F., Teixeira, F. J. C. E. S. N., & Zopounidis, C. (2022). Artificial intelligence, digital transformation and cybersecurity in the banking sector: A multi-stakeholder cognition-driven framework. Research in International Business and Finance, 60, 101616. https://doi.org/10.1016/j.ribaf.2022.101616
Roseline, J. F., Naidu, G., Pandi, V. S., Rajasree, S. a. A., & Mageswari, D. (2022). Autonomous credit card fraud detection using machine learning approach☆. Computers & Electrical Engineering, 102, 108132. https://doi.org/10.1016/j.compeleceng.2022.108132
Sarea, A., El-Sayed, A. F., & Bin-Nashwan, S. A. (2021). Artificial intelligence and Islamic Finance. In Routledge eBooks. https://doi.org/10.4324/9781003171638
Shah, C., Nachand, D., Wald, C., & Chen, P. (2023). Keeping patient data secure in the age of Radiology Artificial intelligence: cybersecurity considerations and future directions. Journal of the American College of Radiology, 20(9), 828–835. https://doi.org/10.1016/j.jacr.2023.06.023
Shahar, W. S., Puad, N. B., Rafdi, N. B., Sanusi, S. W., & Hassin, W. S. (2017). The historical development of Islamic banking. International Conference on Management and Muamalah, 503-508.
Shi, W., Shambare, N., & Wang, J. (2008). The adoption of Internet banking: An institutional theory perspective. Journal of Financial Services Marketing, 12(4), 272–286. https://doi.org/10.1057/palgrave.fsm.4760081
Suhartanto, D., Syarief, M. E., Nugraha, A. C., Suhaeni, T., Masthura, A., & Amin, H. (2021). Millennial loyalty towards artificial intelligence-enabled mobile banking: evidence from Indonesian Islamic banks. Journal of Islamic Marketing, 13(9), 1958–1972. https://doi.org/10.1108/jima-12-2020-0380
Statista (2022). Retrieved from statista: https://www.statista.com/statistics/830681/indonesia-top-banks-by-total-assets/
Syed, M. H., Khan, S., Rabbani, M. R., & Thalassinos, Y. (2020). An Artificial Intelligence and NLP based Islamic FinTech Model Combining Zakat and Qardh-Al-Hasan for Countering the Adverse Impact of COVID 19 on SMEs and Individuals. International Journal of Economics and Business Administration, VIII(Issue 2), 351–364. https://doi.org/10.35808/ijeba/466
Tabash, M. I., & Dhankar, R. S. (2014). The Impact of Global Financial Crisis on the Stability of Islamic Banks: An Empirical Evidence. Journal of Islamic Banking and Finance, 367-388.
Talib, N. Y. A., Latiff, R. A., & Aman, A. (2020). An institutional perspective for research in waqf accounting and reporting. Journal of Islamic Accounting and Business Research, 11(2), 400–427. https://doi.org/10.1108/jiabr-11-2016-0132
Volkmar, G. V., Fischer, P. M., & Reinecke, S. (2022). Artificial Intelligence and Machine Learning: Exploring drivers, barriers, and future developments in marketing management. Journal of Business Research, 149, 599–614. https://doi.org/10.1016/j.jbusres.2022.04.007
Wong, L., Leong, L., Hew, J., Tan, G. W., & Ooi, K. (2020). Time to seize the digital evolution: Adoption of blockchain in operations and supply chain management among Malaysian SMEs. International Journal of Information Management, 52, 101997. https://doi.org/10.1016/j.ijinfomgt.2019.08.005
Wonglimpiyarat, J. (2014). Competition and challenges of mobile banking: A systematic review of major bank models in the Thai banking industry. The Journal of High Technology Management Research, 25(2), 123–131. https://doi.org/10.1016/j.hitech.2014.07.009
Zhou, Q., Lim, F. J., Yu, H., Xu, G., Ren, X., Liŭ, D., Wang, X., Mai, X., & Xu, H. (2021). A study on factors affecting service quality and loyalty intention in mobile banking. Journal of Retailing and Consumer Services, 60, 102424. https://doi.org/10.1016/j.jretconser.2020.102424
Authors
Copyright (c) 2024 Issa Hamadou, Aimatul Yumna , Hawaou Hamadou, Mamadou Salieu Jallow
This work is licensed under a Creative Commons Attribution 4.0 International License.