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Abstract: The objective of this work is to investigate the links among price returns and among 

(realized) price volatilities in the US soybean industry. To this end, it employs daily futures prices 

from 2010 to 2025 and the flexible Wavelet Local Multiple Correlation (WLMC) approach. The joint 

returns link among soybeans, soybean meal, and soybean oil is positive, time-varying, and 

frequency-dependent (i.e., asymmetric). The vertical links (those between the input and each of the 

two co-products of the soybean crush) tend to be stronger than the horizontal link (between soybean 

meal and soybean oil). The joint link for realized volatility is also positive and asymmetric. For both 

returns and realized volatility, the input market appears to be a recipient of shocks from the co-

products markets. 
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1. Introduction 

The soybean complex, which includes the production of soybeans, soybean meal, and 

soybean oil, is an important component of the US livestock feed, food, and renewable 

energy supply chains. According to a recent study by the National Oilseed Processors 

Association (NOPA, 2023), the soybean sector accounts for approximately 0.6 per cent of 

the US Gross Domestic Product. 

The US is the second (after Brazil) soybean producer and exporter. Soybeans are 

processed (“crushed”) into two co-products, namely, the soybean meal and the soybean 

oil. From the US-produced soybean meal, about 30 per cent is exported; the rest is used 

domestically as the primary protein source for livestock and aquaculture. From US-

produced soybean oil, about 50 per cent is used as edible and restaurant frying oil as well 

as an input in the production of processed foods (e.g., margarines, dressings) and non-

food products (e.g., lubricants, cosmetics), about 45 per cent is used in biodiesel 

production, and the rest is exported.1 Historically, soybeans in the US had been mainly 

“crushed for meal”; in the last 15 years, however, the initiation of federal (RFS - 

Renewable Fuel Standard) and state-level (e.g., California’s LCFS – Low Carbon Fuel 

Standard) policies alongside with the biodiesel tax credit have incentivised processors to 

switch to “crushing for oil” (e.g., Gerds, 2022). 

The economic viability of soybean processing firms hinges upon the crush spread 

(margin) (i.e., the difference between the value of the two co-products and the cost of 

soybeans). The dynamics of the crush spread are difficult to predict. Soybeans, soybean 

meal, and soybean oil are traded internationally (and, thus, their prices are affected by 

exchange rates, global supply and demand, and geopolitical risks). More importantly, 

while the two co-products are subject to parallel supply shifts (soybean crushing typically 

 
1. Information on the utilization of soybeans, soybean meal and soybean oil in the US is available at 

https://www.ers.usda.gov/data-products/oil-crops-yearbook. 
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results in 80 per cent meal and 20 per cent oil, a proportion that processors can hardly 

alter), they are consumed for widely different purposes (and, thus, are subject to largely 

independent demand shocks). To hedge the crush spread, processors may take opposite 

positions in the spot and the futures markets so that a loss (gain) in one market is offset 

by a gain (loss) in the other. Speculators long the crush spread (i.e., they buy meal and oil 

futures and sell soybean futures) when betting on a higher margin and sell it (i.e., they sell 

soybean futures and buy meal and oil futures) when betting on a lower margin. 

Alternatively, futures market participants may execute the soybean crush in a single trade. 

Relative to legging into the spread (that is, trading the individual components separately), 

the latter approach costs less and reduces the so-called “leg-risk”. Nevertheless, legging 

may turn out to be more profitable, provided that a trader enters each leg of the spread at 

an advantageous moment (that means, in legging, timing matters). 

Due to the unique characteristics of the soybean complex, information about the 

nature of price links is potentially useful for processors, speculators, investors, 

policymakers, and research economists. However, despite the practical and theoretical 

importance of the topic, the number of relevant empirical works is quite small. 

Beutler and Brorsen (1985) employed a 3-variate Vector Autoregressive (VAR) model 

to assess the temporal (lead-lag) relationships among the spot prices of soybeans, soybean 

meal, and soybean oil. According to their results, the price of soybeans led the co-

products’ prices, while past oil prices had a negative impact on meal prices. Simon (1999), 

using the Engle-Granger approach, found that the three futures prices in the complex were 

cointegrated. Babula et al. (2004), relying on structural VAR models and Forecast Error 

Variance Decompositions, reported unidirectional causality from soybeans spot prices to 

oil spot prices and bidirectional causality between soybeans spot prices and meal spot 

prices. Adrangi et al. (2006), employing two bivariate Johansen cointegration models (one 

for the pair soybeans and meal and the other for the pair soybeans and oil), found that the 

futures prices in each pair were cointegrated and that the prices of the co-products led the 

price of soybeans. Fousekis (2023) relied on the Conditional Value-at-Risk (CoVaR) model 

to investigate the links among the US futures prices of soybeans, meal, and oil at different 

parts of their joint distribution (i.e., upper extremes, lower extremes, and median). He 

found strong positive links in the vertical direction and a negative link in the horizontal 

direction (especially under large positive price shocks). 

A common implicit assumption of the earlier empirical works is that price linkages 

in the US soybean complex are stationary in two dimensions, namely, the time dimension 

and the frequency (timescale) dimension. Stationarity in the time dimension precludes the 

possibility that the intensity and the sign of price relationships may evolve in line with 

the supply and demand dynamics. Stationarity in the frequency dimension ignores the 

fact that traders in commodity futures markets are heterogeneous in terms of their 

investment horizons; therefore, different price co-movement structures may be relevant 

at different timescales (such as the short-, the medium, and the long-run). Non-stationary 

linkages in the time and/or the frequency dimension are evidence of asymmetric price 

connectedness (e.g., Chatziantoniou et al., 2023; Bouri et al., 2023, and Bouri et al., 2024). 

To offer novel and richer insights into price links in the US soybean industry, the 

present work relies on the Wavelet Local Multiple Multicorrelation (WLMC) approach 

(Fernandez-Macho, 2018). The WLMC is a flexible tool that allows the association between 

stochastic processes to be both time-varying and frequency(timescale)-dependent. The 

WLMC has been employed by Fernandez-Macho (2018) to investigate co-movement 

dynamics among Eurozone stock markets, by Polanco-Martinez et al. (2018) to assess the 

links among crude oil and petroleum-product markets, by Shah et al. (2022) to analyze the 

effect of global energy innovation and resource prices on carbon emissions, by Bouri et al. 

(2023) to assess price and volatility connectedness among major commodity (crude oil, 

copper, gold, and wheat) futures markets, and by Bouri et al. (2024) to quantify the 

relationship between fear indices and S&P500 returns. All these recent empirical works 

have offered plenty of evidence in favor of dynamic and frequency-dependent links. 



Modern Finance. 2025, 3(3) 135 
 

 

2. Analytical Framework 

Let Y be an m-variate stochastic process at time t = 1, 2, …, T. Let also yᵢ ∈ Y (i = 1, 2, 

…, m) and a fixed s in [1, 2, …, T]. Then, there is a local linear regression function fₛ(Y₋ᵢ) 

minimizing the weighted sum of squared errors. 

𝑆𝑠 =  ∑ 𝜃(𝑡 − 𝑠)(𝑓𝑠(𝑌−𝑖,𝑡) − 𝑦𝑖𝑡)2𝑇
𝑡=1        (1) 

where θ(t − s) stands for a moving average weight function of the time lag between 

observations Yₜ and Yₛ. The local coefficients of determination over the different values of 

s are 

𝑅𝑠 =
2 1-

𝑅𝑆𝑆𝑊𝑠

𝑇𝑆𝑆𝑊𝑠
           (2) 

where RSS and TSS stand for the residual and the total sum of squares, respectively. 

The application of the maximal overlap discrete wavelet transform (MODWT) 

(Percival & Walden, 2000) of order/decomposition level j = 1, 2, …, J to every yᵢ ∈ Y obtains 

collections Wⱼ,ₜ = (w₁ⱼ,ₜ, w₂ⱼ,ₜ, …, wₘⱼ,ₜ) that are the wavelet coefficients for timescale λⱼ,ₜ. Then, 

at each wavelet scale λⱼ one can calculate a series of localized multiple correlation 

coefficients WLMC (Φₓ,ₛ(λⱼ)) as the square roots of the coefficients of determination in (2) 

for the linear combination of variables wₘⱼ,ₜ (i = 1, 2, …, m) where such coefficients of 

determination are maxima; that is, 

𝛷𝑥,𝑠(𝑗) = √𝑅𝑗,𝑠
2            (3) 

for s=1, 2, …, T and j=1, 2, …, J (Fernandez-Macho, 2018). The variable maximizing the 

WLMC at a given period and timescale (i.e., the most dependent one) is termed as 

dominant (Shah et al., 2022; Bouri et al., 2023). As noted by Polanco Martinez et al. (2018) 

and Polanco-Martinez (2023), dominance in the context of the WLMC analysis indicates 

the presence of a phase difference between the dominant variable and the remaining 

variables in the dynamic system (i.e., the dominant process generally follows the others)2. 

Given that the coefficient of determination is equal to the squared correlation 

between the observed and the fitted values of a linear regression, one may express the 

consistent sample estimator of WLMC as  


𝑥,𝑠

(𝑗) = 𝑐𝑜𝑟(𝜃(𝑡 − 𝑠)0.5𝑤𝑖𝑗𝑡 ,𝜃(𝑡 − 𝑠)0.5𝑤̂𝑖𝑗𝑡 ).     (4) 

where Wᵢⱼ is the dominant variable and ŵᵢⱼ,ₜ is the vector of fitted values from the linear 

regression of the dominant on the set of the remaining regressors {wₗⱼ : l ≠ i}. The (1 − 

α)100% confidence interval for the wavelet local correlations is 

𝐶𝐼1−𝛼=𝑡𝑎𝑛ℎ [arctanh (𝛷𝑥,𝑠 ((
𝑗
)) ± 

1−∝

−1 √𝛵/2𝑗 − 3]     (5) 

where φ⁻¹₍₁₋α/₂₎ is the (1 − α)100% quantile of the standard normal distribution (Fernandez-

Macho, 2018). 

  

 
2. The interpretation relies on the notion of instantaneous/contemporaneous causality (Granger, 1969; Vinod, 2017). The 

empirical investigation of instantaneous causality can be conducted for three or more variables as the coefficient of 

determination from (for example) the linear model of Y on X and Z variables is not necessarily the same as that from the linear 

model of X on Y and Z variables. 
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Figure 1. The logarithmic price series 

 

3. The data 

The data for the empirical analysis are daily front-month futures prices of soybeans 

(in cents per bushel), meal (in $ per short ton), and oil (in cents per pound). They have 

been obtained from Yahoo Finance and refer to the period 1/1/2010 to 5/30/2025.3 Figure 

1 shows the evolution of their respective natural logarithms. 

Comparing the prices of the two co-products is somewhat difficult as one price is 

denominated in short tons and the other in pounds. To overcome this problem, the 

industry evaluates the relative price of oil as the oil’s share in the soybean crush (i.e., the 

revenue received from selling both meal and oil). The so-called oilshare is calculated as4 

𝑜𝑖𝑙𝑠ℎ𝑎𝑟𝑒 =
(oilshare)(0.11)

(oilshare)(0.11)+(meal price)(0.022)
         (6) 

  

 
3. Available at https://finance.yahoo.com/quote/ZS%3DF/history/, https://finance.yahoo.com/quote/ZM%3DF/history/, and 

https://finance.yahoo.com/quote/ZL%3DF/history/, for soybeans, soybean meal, and soybean oil, respectively. Accessed on 

6/5/2025. 
4. One bushel of soybeans crushed results in 44 pounds of meal and 11 pounds of oil. The multiplication by 0.022 converts meal 

price to the price of 44 pounds and the multiplication by 0.11 converts oil price to the price of 11 pounds. For details see 

https://www.cmegroup.com/articles/whitepapers/what-is-oil-share.html. 
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Figure 2. The evolution of the oilshare 

 

Figure 3. The evolution of the crush spread 

 

Figure 2 shows the evolution of the relative price of oil. The oilshare ranged between 

40 and 45 per cent at the beginning of the sample; it dropped dramatically in 2012 and 

fluctuated between 25 and 35 per cent until 2020; it rose precipitously in 2021 and 2022; 

since then, it has been fluctuating at about 40 per cent. Although the oil share has exhibited 

very strong volatility, its trend during the last 10 years has been generally positive. This 

has been the result of an increasing demand for soybean oil by the biodiesel industry, 

combined with a relatively stable demand for soybean meal by the animal feeding 

industry (Gerdts, 2022). 

Figure 3 shows the evolution of the spread (margin) per bushel of soybeans crushed, 

calculated as5  

𝑐𝑟𝑢𝑠ℎ 𝑠𝑝𝑒𝑒𝑑 = (𝑚𝑒𝑎𝑙 𝑝𝑟𝑖𝑐𝑒)(0.022) + (𝑜𝑖𝑙 𝑝𝑟𝑖𝑐𝑒)(0.11) − (𝑠𝑜𝑦𝑏𝑒𝑎𝑛𝑠 𝑝𝑟𝑖𝑐𝑒)/100  (7) 

The margin has shown considerable volatility and a generally upward trend. The 

drops in 2015-16 and 2023 were probably the result of global soybean oversupply, while 

those in 2018-20 were due to the US-China trade war, the African Swine Fever in China, 

and the demand uncertainties associated with the initial phase of the COVID-19 

pandemic. 

Table A.1.1 in the Appendix presents the results of the KPSS (Kwiatkowski et al., 

1992) test on weak stationarity for the logarithmic price levels and the price returns. The 

 
5. https://www.cmegroup.com/trading/agricultural/grain‑and‑oilseed/soybean‑crush‑spreads.html. 
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logarithmic price series is non-stationary. The returns series, however, are. Table A.1(b) 

shows, for comparison, the results from Hardi’s (2000) panel unit root test. The null 

hypothesis (all series are stationary) is rejected for the logarithmic levels but not for the 

returns. Therefore, the empirical analysis subsequently relies on returns. Table A.2 

provides descriptive statistics for the price returns. All series exhibit negative skewness 

and excess kurtosis; the null of normality is rejected everywhere. 

Figure 4. WLM Correlations for soybean meal and soybean oil returns 
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Figure 5. WLM Correlations for soybean oil and soybean returns 

 

4. The empirical models and the results 

4.1. The empirical models 

The theoretical maximum decomposition level for the MODWT is the integer part of 

log2 (T) (Percival & Walden, 2000). In practice, however, J is usually set below the 

theoretical maximum to avoid boundary effects (as the number of feasible wavelet 

coefficients becomes critically small at high levels of J).  Following Fernandez-Macho 

(2018) and Bouri et al. (2023) (who worked with sample sizes very similar to ours), J has 

been set equal to 7. With five daily observations per week, this produces wavelet 

coefficients at timescales 2-4 (very short-run), 4-8, 8-16, 16-32, 32-64, 64-128, 128-256 

trading days. The timescale above 256 is the smooth (long-run). 

As shown by Gencay et al. (2001), relatively long wavelet filters are necessary to 

analyze non-stationary correlation structures. Here, following Bouri et al. (2023) and Bouri 

et al. (2024), we employ the Daubechies least asymmetric filter of length 8 (“la8”). Finally, 
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in line with most of the earlier applications of the WLMC, we use a Gaussian weight 

(rolling window) function (e.g., Polanco-Martinez et al., 2020; Shah et al., 2022; Bouri et 

al., 2023).  The length of the rolling window has been set equal to 260 trading days 

(approximately one calendar year) as in Bouri et al. (2023) and Bouri et al. (2024).  The 

choice avoids the introduction of excessive variability and, at the same time, ensures that 

associations at very small timescales can be isolated and studied. The empirical analysis 

has been conducted using the R package VisualDom (Polanco-Martinez, 2023). 

Figure 6. WLM Correlations for soybeans and soybean meal returns 

 

4.2. The WLMC coefficients for the price returns 

Figures 4, 5, and 6 show (as a preliminary step) the time-varying and multiscale 

correlation coefficients for the bivariate cases (pairs (oil returns, meal returns), (oil returns, 

soybeans returns), and (meal returns, soybeans returns)) along with their respective 95 

per cent confidence bands. 

In Figure 4, for the small and medium timescales (that is, from 2 to 64 trading days) 

and in 2010-2012, the correlation is positive and increasing. It shows a strong downward 
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trend from 2013 to 2014 and fluctuates around 0.1 until 2020. Negative and statistically 

significant coefficients (especially at the small timescales) appear towards the end of the 

sample.  In the most recent periods and at larger timescales, the correlations are highly 

volatile; they assume positive and statistically significant values as high as 0.8 and 

negative and statistically significant values as low as -0.5. The presence of weak and/or 

negative correlations between oil and meal returns is entirely possible given that the co-

products are subject to the same supply but independent demand shocks. The finding 

agrees with earlier evidence by Beutler and Brorsen (1985) and Fousekis (2023). 

Interestingly, for all timescales but the long run, the decreasing, weak, and/or negative 

connectedness coincide with the emergence and expansion of the biodiesel industry in the 

US (and the processors' switch to “crushing for oil”).  

The evolution of multiscale correlations for the pair (oil returns, soybeans returns) 

(Figure 5) is, in many respects, similar to that in Figure 4. Nevertheless, there is an 

important difference; there are hardly any negative and statistically significant 

associations, while the levels of positive ones are much higher for the same time-frequency 

combinations. This, to a larger degree, applies to the local wavelet correlations for the pair 

(meal returns, soybeans returns), where the vast majority of values well exceed 0.7 (Figure 

6). Therefore, the pair (meal returns, soybeans returns) exhibits by far the highest degree 

of connectivity. From the visual comparison of Figures 4 to 6, it follows that the vertical 

price links in the US soybean complex are positive and stronger (in absolute value terms) 

than the horizontal price link. The result is consistent with what was reported by Fousekis 

(2023). 

Figure 7 plots the dynamic multiscale structure of connectedness from the trivariate 

(joint) analysis. The correlation coefficients are positive and statistically significant across 

all periods and timescales. The average frequency-specific values range from about 0.8 on 

the small timescales to above 0.9 on the large timescales. The rise of correlations with the 

time horizon is natural, as the process of information diffusion is a gradual one. At larger 

timescales, there is little room for noise traders to influence the market outcomes. In any 

case, the strong connectedness indicates that the three markets in the complex are well 

integrated. The evidence is consistent with the well-established fact that commodity prices 

exhibit common cyclical behavior (e.g., Bouri et al., 2023) and the findings by Simon 

(1999). 

The high correlation values at both the small and the large timescales point to the 

presence of pure (short-run) and fundamental-based (long-run) contagion, respectively 

(e.g., Gallegati, 2012; Bouri et al., 2023). The short- and the long-run contagion, in turn, 

suggest: First, the margin of soybean processing firms in the US is, to a certain extent, self-

hedged6. Nevertheless, the need for commercial traders to hedge the crush spread by 

taking opposite positions on the spot and the futures markets is likely to be stronger in 

the short- than in the long-run. Second, the crush spread displays anti-persistence; that is, 

it tends to revert to its long-run equilibrium level (normal/fair value). The speed of mean-

reversion is higher at larger timescales. Speculators may exploit anti-persistence by 

buying (selling) the crush spread when it is currently below (above) its fair value. 

The timescale-specific correlations show considerable variability and exhibit troughs 

and peaks that are common in many of the frequencies considered. There is a trough 

centred in 2015 (global oversupply of soybeans); in 2019 (Asian Swine Fever in China); 

and another in 2022 (outbreak of the war in Ukraine and the associated with it sunflower 

oil shortage). There is a peak centred in 2017 (strong Chinese soybean meal demand) and 

another in 2020 (the initial phase of the COVID-19 pandemic). 

 

  

 
6. A spread is self-hedged when the prices of inputs and outputs rise and fall in unison (Collins, 2000). Self-hedging is a direct 

outcome of the profit maximization postulate. A profit function is homogeneous of degree zero in output and input prices 

(that means, the profit level remains the same when the prices of all outputs and inputs change by the same percentage). 
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Figure 7. WLM Correlations for soybeans, soybean oil, and soybean meal returns 

 

Almost all frequency-specific correlations show downward trends. One possible 

explanation for this development is the switch from “crushing for meal” to “crushing for 

oil”. Another is that, while large parts of the US-produced soybeans and meal are 

exported, the US-produced oil is still predominantly directed to the domestic market. 

Moreover, the biodiesel tax credit favors domestic producers, making imports of other 

oils (e.g., palm) less competitive on the US market. 

Figure 8 shows the heatmap of the dominant variable(s) in the trivariate system 

across time and frequencies. The soybean returns series maximizes the correlation 

coefficients in the vast majority of time-frequency combinations. Given that dominance in 

the context of the WLMC implies a phase difference, the prices of meal and oil are weakly 

exogenous processes, and convergence to the long-run equilibrium occurs through 

adjustments in the price of soybeans. The information in the US soybean complex flows 

from the downstream markets to the upstream (raw input) market; in other words, market 

integration in the US soybean complex is demand-driven. 
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Figure 8. The heatmap of dominant variable(s): Soybeans, soybean oil, and soybean meal returns 

 

In the context of petroleum refining, demand-driven vertical market integration is 

taken as evidence in support of Verleger (1982) hypothesis, an implication of which is that 

the crack spread (difference between the value of the refined products and the cost of 

crude oil used to produce them) has a predictive power for the crude oil prices (e.g., Asche 

et al., 2003; Vides et al., 2023). The heatmap in Figure 8 suggests that the Verleger 

hypothesis is probably valid for the soybean complex as well. 

4.3. The WLMC coefficients for realized volatility 

The realized volatility (RV), measured here by the daily squared returns (Andersen 

& Bollerslev, 1998), contains key information about the historical price fluctuations of an 

asset. As such, it is employed by investors for risk assessment, portfolio optimization, 

option pricing, and forecasting. Figure 9 plots the dynamic multiscale structure of 

connectedness for the pair (oil RV and meal RV). For timescales up to 1 month, the 

correlations exhibit downward trends; there is also a large number of weak and/or 

negative and statistically significant values (especially in the most recent periods). For the 

timescales (32,64] and (64,128], the correlations do not show any clear trend (relatively 

long periods of positive and statistically significant values alternate with relatively long 

periods of negative and statistically significant values). For the timescale [128-256], all 

correlations are positive and statistically significant; small at the middle of the sample and 

large at the beginning and at the end. In the long run, the RV correlations are close to 1. 

Figure 10 shows the time-varying and multiscale correlation coefficients for the pair (oil 

RV and soybeans RV). The connectedness pattern is very similar to that for the pair (oil 

RV and meal RV). Figure 11 plots the WLMC results for the pair (meal RV and soybeans 

RV). All correlations are positive and statistically significant; only at the (16-64] timescale 

there is a clear downward trend. The values for the long run are very close to 1. From the 

visual comparison of Figures 9 to 11, it follows that the RV link between meal and 

soybeans is far stronger relative to those for the other two pairs. 

Figure 12 presents the WLMC coefficients from the joint (trivariate) analysis. All 

correlations are positive and statistically significant; there is some evidence of decreasing 

intensity in co-volatility at the small and medium timescales. Interestingly, the average 

values of correlations at the small timescales are larger than those at the medium ones. 

The joint analysis shows that there is considerable synchronisation of turbulent and 

tranquil periods across the three markets of the US soybean complex. 

Figure 13 shows the relevant heatmap of the dominant variable(s). For the majority 

of time period-frequency combinations, the RV of soybeans dominates. Nevertheless, in a 

sizable part of combinations in the second half of the sample, the RV of meal price appears 

to be driven by the RVs of oil and soybean prices. 
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Figure 9. WLM Correlations for soybean oil and soybean meal realized volatility 

 

5. Conclusions 

The pattern (sign and intensity) of price links in the soybeans complex is of interest 

to industry stakeholders, futures markets participants, and research economists. To 

investigate this, the present work employs daily futures prices of soybeans, soybean meal, 

and soybean oil from 2010 to 2025, as well as the WLMC approach, which allows joint 

(multivariate) associations to be time-varying and frequency-dependent. The analysis 

considers both price returns and realized volatility. 

The empirical results suggest: The three price returns series maintain a time-varying, 

frequency-dependent, and positive connectedness that tends to increase with the time 

horizon. However, despite the very large timescales, the degree of market integration is 

not perfect. This, in turn, implies that, although the crush spread is to a certain extent self-

hedged, soybean processors may still need to hedge at the smaller time scales by assuming 

opposite positions on the cash and futures markets. 
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Figure 10. WLM Correlations for soybeans and soybean oil realized volatility 

 

Most of the scale-specific links among the three return series exhibit downward 

trends. There are two possible explanations for this dynamic pattern.  First, it is the rising 

influence of noise traders and speculators on the futures markets’ outcomes. Second, it is 

the uneven growth in the demand for meals and oil. The weakening of price connections 

over time may raise concerns for policymakers, as it could undermine the desirable 

property of self-hedged profits. 

(c) The vertical price links tend to be more pronounced than the horizontal ones. 

(d) Almost invariably, the stochastic process maximizing the multiscale correlation 

coefficients in the complex is the input (soybeans) returns, implying that the information 

in the US soybean complex is likely to be transmitted upstream rather than downstream. 

The demand-driven vertical market integration is consistent with Verleger's (1982) 

hypothesis. 

(e) The dynamics and the multiscale pattern of the RV connectedness provide 

considerable evidence that the markets in the US soybean complex are likely to share 

tumultuous and calm periods (i.e., they exhibit co-volatility). The RV of soybean prices is, 
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under most time-frequency combinations, the dominant process in the system (suggesting 

the market of soybeans is a recipient of instability or tranquility from the other two 

markets). 

The application of the WLMC approach has provided certain useful insights about  

The nature and the dynamics of price and volatility linkages in the US soybean complex. 

Nevertheless, as noted by Polanco-Martinez (2023), the WLM correlation coefficients may 

be influenced by the presence of delayed dependencies. Therefore, one potential avenue 

for future research is to extend the WLMC approach to account for lagged effects. Another 

avenue may consider price links in the US soybean industry using alternative tools (such 

as Generalized Forecast Errors, Variance Decomposition, and Multifractal Correlations). 

In any case, additional work on this elaborate topic is certainly warranted. 

Figure 11. WLM Correlations for soybeans and soybean meal realized volatility 
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Figure 12. WLM Correlations for soybeans, soybean oil, and soybean meal realized volatility 

 

Figure 13. The heatmap of dominant variable(s): Soybeans, soybean oil, and soybean meal realized 

volatility 
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Appendix A 

Table A.1 (a). KPSS test results 

Price levels 

(in natural logs) 

With constant With a deterministic trend 

Soybeans 1.319 1.331 

Soybean Meal 0.667 0.666 

Soybean Oil  

Price returns 

1.935 2.183 

Soybeans   0.072 0.073 

Soybean Meal 0.033 0.049 

Soybean Oil 0.082 0.093 

Note: At the 5 per cent level, the critical values are 0.463 and 0.146 for the model with a constant and 

the model with a deterministic trend, respectively 

Table A.1 (b). Hadri’s test results 

Price levels 

(in natural logs) 

With constant With a deterministic trend 

z test (p-value) 472.8 (0.00) 1585.1 (0.00) 

Price returns 

z test (p-value) -1.13 (0.87) -0.25 (0.6) 

Note: Alternative hypothesis: at least one series has a unit root 

Table A.2. Returns. Descriptive statistics  

Commodity Mean SD Max Min Skewness Kurtosis Normality 

Soybean Oil 0 0.015 0.073 -0.095 -0.200 (0.000) 5.230 (0.000) 0.981 (0.000) 

Soybean Meal 0 0.018 0.103 -0.186 -1.415 (0.000) 17.473 (0.000) 0.895 (0.000) 

Soybeans 0 0.014 0.064 -0.111 -0.811 (0.000) 9.201 (0.000) 0.947 (0.000) 

Note: p-values in parentheses. 
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