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Abstract: The post-COVID era highlights the need for sustainable, resilient economies. This study 

investigates the interconnectedness between green finance, blue economy indices, clean energy 

assets, and energy commodities using a TVP-VAR and quantile VAR model from October 2021 to 

January 2024. Results show high connectedness (90–100%), with clean energy indices (OCEN, GNR) 

as key transmitters and oil/gas as net receivers, especially during stress periods. Spillover 

asymmetries across quantiles confirm non-linear risk transmission. Findings inform investors and 

policymakers on aligning green finance with energy policy, enhancing risk management tools, and 

promoting global cooperation for a just transition. This framework supports forward-looking, 

sustainable financial and energy strategies. 
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1. Introduction 

Increasing environmental degradation urges the world to address the surrounding 

sustainability and implement green energy projects. In this regard, the Paris Climate 

Agreement of 2015 pushes governments worldwide to transition from carbon-intensive 

energy sources toward renewable alternatives. The agreement aims to limit the global 

temperature rise to well below 2 degrees Celsius above pre-industrial levels, with a 

specific effort to limit the increase to 1.5 degrees Celsius. Hence, it pushes governments 

worldwide to prioritize the transition from dirty, fossil fuel-based energy systems to 

sustainable, renewable alternatives. Regarding the deficiencies in the financial market's 

arrangement, the United Nations Global Compact published a report in 2019 that urges 

the need to reorient the major global financial markets to achieve the Sustainable 

Development Goals (SDGs) by 2030. 

In this framework, analyzing the relationship between the blue economy, green 

finance, and energy commodities is crucial to ensure a sustainable economic transition 

that is resilient to climate change and energy crises. Traditional energy commodities, such 

as oil, gas, and coal, continue to underpin the global economy but are vulnerable to price 

volatility and geopolitical risks. By investigating the potential of the blue economy (e.g., 

ocean energy), nations may diversify their energy sources and mitigate the risks 

associated with energy imports. Furthermore, the overexploitation of marine resources 

and increasing carbon emissions pose a threat to marine ecosystems. Green finance offers 

a solution to deal with these environmental issues through programs like green bonds for 

ocean protection. Examining the connections between the blue economy and green 

finance can therefore spur the creation of novel financial products, such as blue bonds, 

which encourage investments in marine renewable energy and lessen dependency on 
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fossil fuels, stabilizing national economies and improving energy security. Furthermore, 

the majority of studies approach the blue economy, green finance, and energy 

commodities as separate fields rather than as interrelated domains, failing to look at the 

sector-specific linkages between them. For example, there is a lack of knowledge about 

how fluctuations in the prices of energy commodities impact the blue economy and green 

financing. This strategy runs the risk of overlooking important spillover channels that 

could impact sustainability, regulation, and investment. Policy and finance strategies may 

overlook interrelated dangers and opportunities if the interactions between these sectors 

are not nuancedly understood. This study aims to provide practical insights for enhancing 

energy resilience and fostering sustainable economic growth by thoroughly examining 

the connections between the blue economy, green finance, and energy commodities, and 

exposing cross-sectoral dynamics. Xu et al. (2023) highlight that introducing green finance 

markets can effectively mobilize environmentally friendly investment to respond to 

climate challenges. Specifically, green and blue financial instruments such as green bonds, 

blue bonds, and green Exchange-Traded Funds (ETFs) have been exploited to support 

clean energy projects by providing financial services, operating funds, and 

encouragement for green asset portfolios (Lee, 2020; Lin et al., 2022; Rasoulinezhad & 

Taghizadeh-Hesary, 2022; Madaleno et al., 2022), Puaschunder ( 2023), Maina et al. (2024). 

Alomari et al. (2024) demonstrated that ETFs present as interesting financial instruments 

that offer several benefits, including low costs, transparency, diversification, and 

flexibility in trading, thereby enabling more reliable diversification opportunities, 

effective asset allocation, potential hedging strategies, and efficient liquidity management. 

During times of increased uncertainty, such as the Coronavirus pandemic, the 

Russia-Ukraine conflict, and the recent SVB collapse, there has been a notable uptick in 

the performance of ETFs and portfolios containing green assets. The disruptions in global 

markets resulting from COVID-19 have adversely affected both demand and supply, 

consequently slowing down the production of clean energy, as highlighted by Mzoughi 

et al. (2022) and Huang et al. (2023). However, the influx of investors into green finance 

markets has introduced a potential vulnerability, as increased interconnectedness among 

these markets may compromise their ability to achieve environmental goals. This crisis 

has sparked renewed interest in further research, particularly in exploring the necessity 

for safe-haven assets amid extreme market conditions and analyzing diversification 

strategies across asset classes (Jiang et al., 2023; Goa et al., 2024). Similarly, several studies 

highlighting the importance of the blue economy align with the United Nations' 

Sustainable Development Goals (SDGs). These goals aim to increase economic benefits to 

small island developing states (SIDS) by 2030 through the sustainable utilization of marine 

resources. In the post-COVID era, the blue economy presents significant opportunities to 

stimulate economic growth while concurrently safeguarding marine ecosystems and 

fortifying resilience against future challenges. 

Sustainable practices promoted through green finance and the blue economy often 

focus on enhancing the management of natural resources, including water, fossil fuels, 

agricultural land, and others (Le et al., 2021; Dong et al., 2023). By reducing pressure on 

these limited resources, these approaches can mitigate the risks of shortages and price 

volatility, thereby stabilizing energy commodity markets. Nevertheless, these new 

markets may impact the availability of energy commodities, especially WTI and Gas. 

Hence, the study of dynamic spillovers among green finance, the blue economy, and 

commodities is crucial. 

The research in the extant seam of the empirical literature has increasingly analyzed 

the impact of corporate financing instruments in the green finance market, Li et al. (2021), 

Jiang et al. (2023), Tiwari et al. (2022), and the economic impact of the blue economy, 

Bustamante et al. (2023), Pace et al. (2023), Fudge et al. (2023), and Stephenson and Hobday 

(2024). Existing studies have neglected how shock spillovers transmit across green and 

blue stock markets, alongside energy commodities indices, throughout a broad spectrum 

of market states. Hence, to our knowledge, this is the first study to integrate the risk 
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transmission flows between green finance, the blue economy, and commodity indices. The 

analysis of risk transmission flows across these domains provides a more comprehensive 

understanding of the interconnected risks that may arise. For instance, disturbances in the 

commodity market can affect investments in renewable energy, while environmental 

crises in the blue economy can influence commodity prices. Having a holistic grasp of 

these risks enables decision-makers to anticipate potential impacts and implement 

suitable preventive measures. From the perspectives of environmental investors and 

policymakers, examining the interconnectedness and spillover effects among green, blue, 

and commodity markets holds significant importance. This information is crucial for 

adjusting asset portfolios and devising effective hedging strategies. Mensi et al.(2024) 

demonstrate a higher time-varying connectedness among West Texas Intermediate (WTI), 

crude oil, natural gas, heating oil, and petrol, particularly during major crisis episodes 

such as the China-US trade conflict, the COVID-19 Pandemic, and the Russia-Ukraine 

conflict. Through network analysis, they unveil that WTI, heating oil, and green bonds are 

net transmitters of spillovers, whereas other asset classes are predominantly receivers of 

risks. Our study focuses on this research by modifying green finance variables. 

Specifically, we introduce alterations to variables such as the Invesco Solar ETF (TAN) 

and the First Trust Global Wind Energy ETF, alongside the incorporation of additional 

blue economy variables. These blue economy variables include the Global Natural 

Resources ETF (CNRG), the share of the global clean energy ETF, and the IQ Clean Oceans 

ETF. It is important to note that ETFs, or exchange-traded funds, are utilized to represent 

both green finance and blue economy aspects within our study. 

This study aims to gain insights into the resilience and transmission dynamics within 

green finance, the blue economy, and energy commodity markets during periods of 

extreme market conditions. Its significance lies in offering insights into the 

interconnectedness and asymmetries in spillover dynamics across green, blue, and 

conventional asset indices. This aims to foster a deeper understanding of the 

interdependence among different markets and the efficacy of various hedging strategies 

in risk management. Armed with this knowledge, investors can make more informed 

decisions and effectively manage their portfolios, particularly in times of market volatility 

and uncertainty. Understanding the asymmetrical nature of spillover dynamics and the 

effectiveness of diverse hedging strategies empowers investors to navigate market 

challenges and mitigate risks more effectively during periods of instability. Furthermore, 

policymakers can contribute to the promotion of green assets by enhancing transparency 

and standardization in the measurement of environmental, social, and governance factors. 

This initiative facilitates informed decision-making for investors, ensuring that their 

investments align with their values and sustainability objectives. 

The motivation behind this article also stems from the growing need to understand 

how sustainable financial markets interact with traditional energy sectors in the context 

of global uncertainty, climate risks, and energy transitions. While prior research has 

primarily focused on individual markets in isolation, a critical gap remains in 

comprehensively assessing the dynamic interlinkages between green finance, the blue 

economy, and energy commodities under stress scenarios. By bridging this gap, our study 

provides a unified framework that not only captures the complex spillover patterns but 

also highlights the asymmetric transmission of shocks across markets. This is particularly 

useful for institutional investors, financial regulators, and policymakers seeking to 

enhance market resilience, design climate-resilient financial instruments, and support the 

transition toward a more sustainable and inclusive global economy. Our contribution is 

thus both theoretical and practical, offering empirical evidence that can inform long-term 

investment strategies and sustainable financial policymaking. 

Our empirical findings are expected to provide valuable insights into both market 

portfolio diversification strategies and the development of policy frameworks aimed at 

achieving the Sustainable Development Goals (SDGs). Additionally, our research is 

poised to make a significant contribution to the expanding field of empirical studies in 
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green finance and the blue economy, leveraging advanced econometric methodologies. 

We employ the novel estimation methodology proposed by Ando et al. (2018), which is 

an extension of the mean-based vector autoregression (VAR) method developed by 

Diebold and Yilmaz (2012). Several related studies have explored the return–spillover 

nexus using the mean-based method of connectedness (Diebold & Yilmaz, 2012). Previous 

studies have overlooked the mechanisms of return spillover at the extremes of the 

distribution. This paper fills this critical gap in the existing literature by examining the 

patterns of information flows across lower, middle, and upper quantile-based 

distributions. This approach effectively captures the dynamics of stress, stability, and 

bullish periods sequentially. We employ more advanced methods, including TVP-VAR 

extended by a quantile VAR connectedness (QVAR). Using the Quantile Vector 

Autoregression (QVAR) model enables the isolation of idiosyncratic shocks from each 

variable within the system. Furthermore, incorporating a factor structure simplifies the 

estimation process by ensuring cross-sectional independence among the equations 

comprising the VAR model. The QVAR model is particularly suited for analyzing 

idiosyncratic risk shocks and contagion, with the latter often characterized by differences 

in the spread of shocks between unusual occurrences and regular periods (Khalfaoui et 

al., 2022; Tang et al., 2022; Liao & Li, 2025). 

The remainder of this paper is divided as follows. Section 2 presents the literature 

review. Section 3 presents a set of empirical studies, along with their methodology and 

data description. Section 4 discusses the dynamic and static results of our model. Finally, 

Section 5 presents the conclusion and political implications. 

2. Literature review 

Due to growing global demands to combat climate change, the spillover effect of 

green finance and blue economy indices has become an increasingly intriguing subject for 

policymakers and investors. This dynamic highlights the possibilities for synergy and the 

potential challenges associated with transitioning towards sustainable development. In 

the climate change literature, studies on green finance and blue economy are closely 

aligned with two streams of literature: the measurement of volatility spillovers and the 

nexus among green finance markets, blue economy, and conventional financial assets, 

such as commodities. 

In the green finance field, investors are greatly concerned about volatility. 

Fluctuations in asset prices associated with renewable energy and other green sectors can 

impact investment choices, portfolio makeup, and project profitability. Changes in 

renewable energy investments frequently influence commodity prices, government 

subsidies, and energy-related tax regulations. These factors contribute to volatility in 

investor income and returns, Fraundorfer and Rabitz (2020), Poponi et al. (2021), Lee 

(2021), Iskandarova et al. (2021),  Zhang et al. (2022). Li et al. (2021) demonstrate that in 

extreme market conditions, green finance and renewable energy investment are more 

volatile than gross domestic product (GDP). They also demonstrate a bidirectional 

causality between renewable energy investment and renewable energy electricity output, 

both in the short term and the long term. Based on IV-GMM estimating methods and the 

OLS approach, Zhao et al. (2024) highlight a significant relationship between green 

finance and renewable energy investment, demonstrating the interconnectedness 

between green finance and the transition towards renewable energy sources, especially 

during periods of crisis. Employing a variety of methodologies, empirical studies on the 

spillover effects between green finance indices and commodities markets reinforce this 

relationship, suggesting that developments in green finance can have both positive and 

adverse impacts on commodity markets, further emphasizing the importance of 

understanding and managing the interactions between these domains for sustainable 

development, Dogan et al. (2022), Khalfaoui et al. (2022) Deep Sharma et al. (2022), Xion 

and Coa (2023), Trancoso and Gomes (2024), Goa et al. (2024), Ben Salem and El Aoun 

(2025). 
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Recent studies aim to analyze the interconnectedness and spillover effects within 

green finance and energy markets, especially during economic crises. Dogan et al. (2022) 

examine the relationship between green finance and renewable energy sources, using a 

Time-Varying Parameter Vector Autoregressive (TVP-VAR) model to reveal dynamic, 

event-sensitive connections, with green finance generally acting as a net shock receiver. 

Sharif et al. (2023) extend this inquiry into the realm of clean versus black 

cryptocurrencies, showing that clean cryptocurrencies maintain stronger linkages with 

green economy indices, particularly during the COVID-19 pandemic, underscoring the 

green economy’s potential as a diversification tool. Dogan et al. (2023) similarly utilize the 

TVP-VAR framework to explore spillovers between renewable energy sources and carbon 

markets, identifying solar and biofuel as significant transmitters of shocks to global 

carbon. Economic crises, such as the COVID-19 pandemic, notably altered these 

interconnections, with unique patterns of shock transmission observed across various 

renewable energy sources. Together, these studies highlight the nuanced and evolving 

nature of interdependence within sustainable financial and energy markets, providing 

valuable insights for policymakers and investors focused on sustainability and resilience. 

In the blue economy sector, volatility can impact industries related to marine 

resources. For example, the prevalence of seafood prices (PIO) can impact the income of 

fishermen and food processing companies. In the same way, blue economy industries, 

such as coastal tourism and marine renewable energy, can be sensitive to the preference 

of weather and ocean conditions, which could affect projects' profitability and businesses 

in these sectors, Ni et al. (2024), Stephenson and Hobday. (2024), Alsaleh et al. (2024). Le 

et al. (2021) demonstrate that during extreme market movements, the connectivity and the 

spillover effects between the blue economy and conventional commodities are stronger in 

the short term than in the long term. To draw generalized conclusions, Gao et al. (2024) 

investigate the connectedness effect among sustainable development, green technology 

innovation, oil indices, clean energy, and economic cycles. They found a typically short-

lived connectivity and demonstrated that the economic cycle serves as a receiver of shock, 

while sustainable development is a transmitter of shock. The transmission channel 

between the blue economy and the commodity market is a multifaceted process that, to 

my knowledge, has not been extensively explored in current research. However, 

recognizing the potential spillover effects between these two sectors is crucial, as it holds 

implications for advancing sustainability and stability within the commodity market. 

Further research could provide valuable insights into the interplay between the green 

economy and commodity markets, contributing to a more comprehensive understanding 

of sustainable development pathways and economic resilience. 

While studies across green finance, the blue economy, and commodity markets have 

advanced our understanding of financial risk transmission—such as how fluctuations in 

renewable energy and seafood prices affect investment decisions and project profitability 

(e.g., Debrah et al., 2023; Xiaohang et al., 2023)—significant gaps remain. Notably, the 

literature is fragmented, as most analyses treat green, blue, or commodity markets in 

isolation, without offering an integrated framework that captures simultaneous spillovers 

across all three domains, as highlighted by Eleston et al. (2024). Furthermore, empirical 

investigations generally focus on stable periods or a single crisis (e.g., COVID-19), with 

limited examination of how connectedness evolves during health, geopolitical, and 

endogenous financial shocks, and whether these effects persist in the medium and long 

term (Gökgöz et al. 2024; Maneejuk et al., 2025,). Lastly, commodity-volatility studies tend 

to concentrate on energy or agricultural markets and rarely model interactions with 

renewable energy, marine resources, and financial instruments within a unified 

framework (Melas et al., 2024). By developing a comprehensive, crisis‑aware, multivariate 

framework that integrates green, blue, and commodity sectors across diverse shock 

regimes and time horizons, our study fills this critical gap. It offers investors, 

policymakers, and project developers actionable insights for improved risk management 

and enhanced sustainability outcomes in interconnected market systems. 
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In the spillover study, Diebold and Yilmaz (2009) developed measures of return and 

volatility spillovers through variance decompositions within the VAR framework. 

Expanding on this, Demirer et al. (2018a) utilized the Diebold and Yilmaz (2012, 2014) 

connectedness framework, employing the "Least Absolute Shrinkage and Selection 

Operator" (LASSO) approach to estimate an important dimensional network of the 

financial markets indices. Recently, enhancements have been made to the Diebold and 

Yilmaz model by incorporating the quantile approach (Chatziantoniou et al., 2021). This 

addition enables a more nuanced exploration of connectedness and contributes to a 

deeper comprehension of the transmission mechanism of monetary policy in a highly 

integrated global financial system. 

We employ Quantile VAR (QVAR) to measure interconnectedness because it allows 

for a nuanced understanding of the dependency structure across different quantiles of the 

return distribution, capturing both average and extreme behaviors of blue economic, 

green finance, and energy commodities returns, especially under varying economic or 

environmental stress levels. Unlike standard VAR models, which typically focus on mean 

dependencies, QVAR can assess connectivity across varying market conditions—normal, 

stressed, or highly volatile—by examining different quantiles. In our study, the blue 

economy, green finance, and energy commodities are inherently volatile and sensitive to 

economic, environmental, and geopolitical factors. Hence, using the QVAR approach 

enables us to examine interconnectedness not just at the average level but also during 

crisis periods, where dependencies may be stronger or weaker. Furthermore, the 

connections between the blue economy, green finance, and energy commodities might not 

be linear; instead, they might change based on market conditions, environmental 

regulations, and technological developments (Khalfaoui et al., 2022; Abubakr, 2024; 

Kyriazis & Corbet, 2024). By examining several quantiles, QVAR can capture this 

nonlinearity and illustrate how the direction and intensity of linkages fluctuate between 

stable and volatile periods in the markets. 

The empirical literature encompasses several models that model the connectivity 

among variables, including VAR models, vector error correction models (VECMs), and 

Granger causality tests. These models are often focused on mean or long-term 

relationships but may fail to capture dynamic and quantile-specific dependencies (Cepoi 

et al., 2021; Ahmed & Khan, 2024). In contrast, the Quantile VAR model is advantageous 

for research questions that require a closer examination of different states of financial 

markets, especially during periods of economic stress or exogenous shocks. For example, 

Standard VAR models capture the average interactions between time-series data but are 

limited in their ability to differentiate dynamics across varying market conditions. While 

useful for baseline analyses, VAR models may not capture extreme interdependencies 

between the green economy, blue finance, and energy commodities, especially under 

stress. Similarly, GARCH models, particularly multivariate GARCH, focus on volatility 

interactions and can capture spillovers in market risk. These methods help understand 

how volatility in one sector (e.g., energy commodities) might affect others (e.g., green 

finance). However, they typically analyze mean relationships rather than quantile-specific 

dependencies, potentially overlooking connectivity under extreme conditions. However, 

the QVAR approach stands out because it allows for a quantile-specific analysis of 

interconnectedness. This model captures dependencies not only during typical conditions 

but also under extreme market states (such as crises or regulatory shifts). For instance, 

QVAR can reveal whether green finance becomes more or less sensitive to energy 

commodity prices at different quantiles, a critical insight for assessing resilience in 

sustainable sectors (Hossain et al., 2024; Yousfi & Bouzgarrou, 2024). This does not 

prevent QVAR models from being computationally intensive and requiring a careful 

selection of quantiles to avoid overfitting. Additionally, interpreting QVAR results 

demands a more advanced understanding of quantile-based dependencies. 
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3. Methodology and data description 

3.1. Methodologies 

To examine the quantile spillover mechanism across various financial markets, we 

employ the novel quantile and frequency connectedness approach that enables the 

investigation of propagation mechanisms by quantile and frequency. The quantile 

connectedness approach was proposed by Ando et al. (2018), Bouri et al. (2021), and 

Chatziantoniou (2021). The Quantile VAR model is specifically chosen for its capacity to 

capture tail dependencies and asymmetries in asset relationships, which are often crucial 

during periods of economic stress or market instability. Traditional VAR models may not 

effectively capture these extreme co-movements, as they focus on average relationships. 

Quantile VAR, however, considers multiple conditional quantiles, allowing us to examine 

interconnectedness at both the median and tail levels, thereby providing a more 

comprehensive understanding of market linkages in both stable and turbulent times 

(White et al., 2015; Ando et al., 2018). This feature makes Quantile VAR highly suitable for 

addressing our research questions, which seek to understand the varying intensity of 

interconnectedness under different market conditions. 

To further support the relevance of this methodology, we reference studies that have 

employed similar approaches to examine financial market dynamics. For instance, Ando 

et al. (2018) utilized Quantile VAR to capture asymmetric connectedness in financial 

markets, demonstrating the method’s robustness in quantifying spillovers across different 

quantiles. Additionally, Diebold and Yilmaz (2009, 2012) introduced a spillover 

framework using traditional VAR, which inspired our quantile-based approach to extend 

spillover measurement across different market conditions. Similarly, Baruník and Křehlík 

(2018) adopted a time-frequency decomposition to examine spillovers over short-term 

and long-term horizons, validating the need for a time-frequency connectedness analysis 

in studies like ours that investigate dynamic, multi-horizon market relationships. 

Our model integrated, apart from the index on six blue economy and two green 

finance indices, the Invesco Solar ETF and the First Trust Global Wind Energy ETF. 

Commodity performance indices, such as the Gas and WTI indices, were used to analyze 

the transmission channel of risks and to address issues related to institutional 

responsibility for climate change, ensuring sustainability. 

To capture the overall connectedness measure, we estimate a quantile vector 

autoregressive (QVAR(p)) model. The model can be summarized as follows: 

𝐱𝑡 =  𝝁𝒕(𝜏) +  Φ1(𝜏)𝐱𝑡−1 +  Φ2(𝜏)𝐱𝑡−2 + ⋯ + Φ𝑝(𝜏)𝐱𝑡−𝑝 +  𝒖𝑡(𝜏)      (1) 

Where 𝒙𝑡 and 𝒙𝑡−j are vectors representing endogenous variables with dimensions 𝑁 

× 1, the parameter 𝜏 is a closed interval within the range [0, 1], while 𝑝 represents the lag 

length of the QVAR model. (𝜏) is a 𝑁×1 dimensional vector that represents the conditional 

mean, 𝜱𝑗 (𝜏) is a 𝑁 × 𝑁 dimensional matrix of QVAR coefficients, and (𝜏) is a 𝑁 ×1 

dimensional error vector with an 𝑁×𝑁 dimensional error variance-covariance matrix, (𝜏). 

Secondly, to compute the forward M-step Generalized Forecast Error Variance 

Decomposition (GFEVD), Eq. (1) needs to be transformed into the QVMA (∞) form by 

applying Wold's theorem. The QVMA (∞) is presented in the following equation: 

x𝑡 =  𝝁(𝜏) +  ∑ Φ𝑗
𝑝
𝑗=1 (𝜏)𝐱𝑡−𝑗 +  𝒖𝑡(𝜏) =  𝝁(𝜏) + ∑ Ψ𝑖

∞
𝑖=0 (𝜏)𝒖𝑡−𝑖 .        (2) 

The next step involves calculating the generalized forecast error variance 

decomposition (GFEVD) with a forecast horizon of H, a crucial component of the 

connectedness approach (Koop et al., 1996; Pesaran & Shin, 1998). It could be interpreted 

as the impact that series j has on variable i in terms of its forecast error variances: 

θ𝑖𝑗(H) =  
 (Ʃ(𝜏))𝑗𝑗

−1 ∑ ((Ψℎ(𝜏)Ʃ(𝜏))
𝑖𝑗

)
2

H−1
h=0

∑ (Ψℎ(𝜏)Ʃ(𝜏)Ψℎ
′ (𝜏)) 𝑖𝑖

H
h=0

    θ̃̃𝑖𝑗(𝐻)  =  
θ𝑖𝑗(𝐻)

∑ θ𝑖𝑗(𝐻)𝑁
𝑘=1

              (3) 
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The rows of 𝜃 ̃𝑖j(𝐻) Do not sum up to one; we need to normalize them by the row sum, 

which results in 𝜃 ̃𝑖j in (3). Through the normalization. The row sum is equal to unity, 

representing how a shock in series 𝑖 has influenced the series itself and all other series. 

Next, we get the following identities ΣN
i=1𝜃 ̃𝑖j (H)=1 and ΣN

j=1ΣN
i=1𝜃 ̃𝑖j (H)= N. 

In the next phase, all connection measures may be computed. First, we start with the 

net pairwise connectivity as follows: 

𝑁𝑃𝐷𝐶𝑖𝑗(H) =  θ̃𝑖𝑗(H) −  θ̃𝑗𝑖(H)              (4) 

If NPDCij(H) > 0 NPDCij(H) < 0, it signifies that series j has a greater (lesser) influence 

on series I than the other way around. 

The total directional connectedness for others assesses how much an impact in series 

𝑖 influences all other series 𝑗. 

𝑇𝑂𝑖(𝐻) =  ∑ θ̃̃𝑗𝑖(H)𝑁
𝑖=1,𝑖 ≠𝑗                (5) 

The total directional connectedness originating from others quantifies the level of 

impact on series 𝑖 caused by shocks in all other series 𝑗. 

𝐹𝑅𝑂𝑀𝑖(H) =  ∑ θ̃𝑖𝑗(H)𝑁
𝑖=1,𝑖 ≠𝑗               (6) 

The overall net total directional connectedness captures the difference between the 

total directional connectedness towards others and the total directional connectedness 

from others. This disparity can be interpreted as the net impact of series 𝑖 on the 

predefined network. 

𝑁𝐸𝑇𝑖(𝐻) =  𝑇𝑂𝑖(H) −  𝐹𝑅𝑂𝑀𝑖(H)              (7) 

When NETi> 0 (NETi< 0), it means that series i has a greater (lesser) influence on all 

other series j compared to the amount of influence it receives from them. Therefore, it is 

categorized as a net transmitter (net receiver) of shocks. 

The computation of the overall total connectedness index (TCI) evaluates the degree 

of interconnectedness within the network. A higher value of TCI signifies increased 

market risk, while a lower value indicates the opposite. 

𝑇𝐶𝐼(𝐻) =  𝑁−1 ∑ 𝑇𝑂𝑖(𝐻)𝑁
𝑖=1 = 𝑁−1 ∑ 𝐹𝑅𝑂𝑀𝑖(𝐻)𝑁

𝑖=1          (8) 

To investigate the connectedness within the temporal domain, we assess the 

connectivity within the frequency domain. We utilize Stiassny's (1996) spectral 

decomposition method. Initially, we examine the frequency response function, 

represented as 𝜳 (e-i𝜔) = Σ∞h=0 e-i𝜔h𝜳h, where 𝑖 =√(-1) and 𝜔 is the frequency. Next, we 

proceed to analyze the spectral density of xt at a specific frequency 𝜔. This can be obtained 

by applying a Fourier transformation to the QVMA(∞): 

𝑺𝑥(𝜔) =  ∑ 𝐸(𝑥𝑡𝑥𝑡−ℎ
′∞

ℎ= −∞ ) 𝑒−𝑖𝑤ℎ =  𝚿(𝑒−𝑖𝜔ℎ) ∑ 𝚿′(𝑒+𝑖𝜔ℎ)𝑡        (9) 

Likewise, the frequency-based Generalized Forecast Error Variance Decomposition 

(GFEVD) is a fusion of the spectral density and the GFEVD. GFEVD should be normalized 

in the frequency domain, similar to the requirement for normalization in the time domain. 

Its representation is as follows: 

θ𝑖𝑗(𝜔) =  
 (Ʃ(𝜏))𝑗𝑗

−1|∑ (𝚿(𝜏)(𝑒−𝑖𝑤ℎ)Ʃ(𝜏))
𝑖𝑗

∞
ℎ=0 |

2

∑ (𝚿(𝑒−𝑖𝑤ℎ)Ʃ(𝜏)𝚿(𝜏)(𝑒𝑖𝑤ℎ))
𝑖𝑖

∞
ℎ=0

            (10) 

θ̃𝑖𝑗(𝜔)  =  
θ𝑖𝑗(𝜔)

∑ θ𝑖𝑗(𝜔)𝑁
𝑘=1

                 (11) 

The expression 𝜃 ̃𝑖𝑗 (𝜔) refers to the fraction of the spectrum of the 𝑖th series at a given 

frequency 𝜔 that can be attributed to an impact on the 𝑗th series. This measurement is 

commonly referred to as an intra-frequency indicator. To evaluate connectedness across 
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both short-term and long-term time frames, instead of focusing on a single frequency, we 

aggregate all frequencies within a specified range, denoted as: 𝑑= (𝑎, 𝑏): 𝑎, 𝑏 (−𝜋, 𝜋), 𝑎<𝑏: 

𝜃 ̃𝑖j (d) =∫  
b

a
𝜃̃𝑖j (w)dw                (12) 

From this stage, we can compute similar connectedness measures as mentioned 

before; it can be evaluated using the same method. However, in this scenario, these 

measures are known as frequency connectedness measures. They offer insights into the 

transmission of effects within specific frequency ranges (represented by 𝑑), which can be 

interpreted in a similar manner: 

𝑁𝑃𝐷𝐶𝑖𝑗(𝑑) = θ̃̃𝑖𝑗(𝑑) −  θ̃̃𝑗𝑖(𝑑)              (13) 

𝑇𝑂𝑖(𝑑) =  ∑ θ̃̃𝑗𝑖(𝑑)𝑁
𝑖=1,𝑖 ≠𝑗                (14) 

𝐹𝑅𝑂𝑀𝑖(𝑑) =  ∑ θ̃̃𝑖𝑗(𝑑)𝑁
𝑖=1,𝑖 ≠𝑗                (15) 

𝑁𝐸𝑇𝑖(𝑑) =  𝑇𝑂𝑖(𝑑) −  𝐹𝑅𝑂𝑀𝑖(𝑑)             (16) 

𝑇𝐶𝐼(𝑑) =  𝑁−1 ∑ 𝑇𝑂𝑖(𝑑)𝑁
𝑖=1 = 𝑁−1 ∑ 𝐹𝑅𝑂𝑀𝑖(𝑑)𝑁

𝑖=1          (17) 

In our analysis, we define two frequency bands that capture short-term and long-

term dynamics. The first band, 𝑑1 = (𝜋∕5, 𝜋), covers a range of 1 to 5 days, while the second 

band, 𝑑2 = (0, 𝜋∕5], encompasses timeframes from 6 days to an infinite horizon. 

Consequently, NPDCij(d1), 𝑇𝑂𝑖(𝑑1), 𝐹𝑅𝑂𝑀𝑖(𝑑1), 𝑁𝐸𝑇𝑖(𝑑1), and 𝑇𝐶𝐼(𝑑1) represent short-

term total directional connectedness towards others, short-term total directional 

connectedness from others, short-term net total directional connectedness, and short-term 

total connectedness index, respectively. On the other hand, NPDCij(d2), 𝑇𝑂𝑖(𝑑2), 

𝐹𝑅𝑂𝑀𝑖(𝑑2), 𝑁𝐸𝑇𝑖(𝑑2), and 𝑇𝐶𝐼(𝑑2) depict long-term total directional connectedness 

towards others, long-term total directional connectedness from others, long-term net total 

directional connectedness, and long-term total connectedness index, respectively. 

Furthermore, we establish a relationship between the frequency-domain measures 

proposed by Baruník and Křehlík (2018) and the time-domain measures introduced by 

Diebold and Yılmaz (2009, 2012, 2014). 

𝑁𝑃𝐷𝐶𝑖𝑗(𝐻) =∙ ∑  𝑑 𝑁𝑃𝐷𝐶𝑖𝑗(𝑑)              (18) 

𝑇𝑂𝑖(𝐻) =  ∑  𝑑 (d) ∙ 𝑇𝑂𝑖(𝑑)               (19) 

𝐹𝑅𝑂𝑀𝑖(𝑑) =  ∑  𝑑 (d) ∙ 𝐹𝑅𝑂𝑀𝑖(𝑑)             (20) 

𝑁𝐸𝑇𝑖(𝐻) =  ∑  𝑑 (d) ∙ 𝑁𝐸𝑇𝑖(𝑑)               (21) 

𝑇𝐶𝐼(𝐻) =  ∑  𝑑 (d) ∙ 𝑇𝐶𝐼(𝑑)               (22) 

Simply put, the total connectedness measures can be derived by aggregating the 

frequency connectedness measures. It is crucial to highlight that all these measures are 

calculated using a specific quantile, denoted as 𝜏.2. 

3.2. Data and model descrition 

We analyzed the interconnectedness between green and blue stock indices, including 

BJLE, OCEN, GNR, PIO, ICLN, CNRG, FAN, TAN, as well as oil and gas indices (WTI, 

Gas). This analysis covered various endogenous and exogenous crises, utilizing closing 

prices of stock indices from October 26, 2021, to January 05, 2024, sourced from 

www.datastream.com. This sample period coincides with several critical global events 

that have had a significant impact on financial and energy markets. These events include 

the post-COVID-19 economic recovery, the Russia-Ukraine war, the global energy supply 

crisis, and financial instability episodes such as the 2023 Silicon Valley Bank collapse. 

These events provide a rich context to assess the evolving and stress-sensitive 

interconnectedness across markets, especially under conditions of heightened uncertainty 
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and policy shifts toward decarbonization. Hence, the selected period is ideal for capturing 

both normal and extreme market conditions, which is crucial for understanding the 

robustness and variability of spillover effects. 

Table 1. Variable measurement and focus1 

Abbreviation Full Name Role / Focus 

BJLE 
BNP Paribas Easy ECPI Global ESG Blue 

Economy UCITS ETF 

Targets companies contributing to the sustainable use of ocean and 

water resources (Blue Economy). 

OCEN IQ Clean Oceans ETF 
Focuses on firms involved in ocean health, pollution control, and 

sustainable marine technologies. 

GNR SPDR S&P Global Natural Resources ETF 
Provides exposure to global companies involved in energy, metals, and 

agricultural resources. 

PIO Invesco Global Water ETF 
Invests in companies engaged in water treatment, infrastructure, and 

conservation. 

CNRG SPDR S&P Kensho Clean Power ETF 
Tracks firms advancing clean energy technologies, including solar, 

wind, and geothermal energy. 

ICLN iShares Global Clean Energy ETF 
Offers exposure to global companies producing renewable energy from 

solar, wind, and similar sources. 

TAN Invesco Solar ETF 
Targets companies involved in the development and production of solar 

energy and related technologies. 

FAN First Trust Global Wind Energy ETF 
Targets companies involved in the development and production of 

wind energy and related components. 

WTI West Texas Intermediate Crude Oil 
A benchmark for U.S. crude oil prices, representing traditional fossil 

fuel energy markets. 

Gas 
Natural Gas Index or Futures (e.g., Henry 

Hub) 

Represents prices or returns in the natural gas market, reflecting fossil-

based energy sources. 

 

The returns are calculated by using the equation Rt=ln (Pt/Pt-1), where Pt represents 

the price on a given day. The green and blue stock indices were chosen based on their 

relevance to the research questions concerning the interconnectedness of clean and 

traditional energy sectors, which is central to understanding energy transition dynamics. 

These indices reflect key assets in the green finance and energy markets, capturing the 

interplay between clean and conventional energy assets amid global economic, 

geopolitical, and environmental crises. Prior studies, such as those by Bouri et al. (2020) 

and Nguyen et al. (2021), have demonstrated that the interconnectedness between clean 

and traditional energy markets is crucial for understanding market spillovers and risk 

management during periods of crisis. Additionally, the literature suggests that indices 

like WTI and Gas serve as key indicators for traditional energy, while ICLN, CNRG, and 

TAN are prominent in clean energy investment. By incorporating these indices, our study 

extends previous work by examining dynamic spillovers and connectedness at different 

quantiles, thereby contributing to a deeper understanding of market behavior across 

diverse economic conditions. Our study begins with TVP-VAR-based connectedness at 

the quantile level of 0.5 and then extends to different quantiles (QVAR). This approach 

highlights how structural shocks of varying intensities influence the interconnection and 

responses of variables, particularly during extreme events. 

The selection comprises a variety of ETFs focused on specific environmental and 

energy themes, including the blue economy, ocean cleanliness, global natural resources, 

 
1. ETFs represent diversified exposure to clean energy sectors, reflecting investor sentiment and sectoral trends, while futures 

contracts (e.g., WTI, Gas) capture real-time price dynamics in traditional energy markets. Including both allows for a 

comprehensive analysis of connectedness between clean and dirty energy assets. 
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water, and clean and renewable energy, such as solar and wind energy. These ETFs 

include BJLE, OCEN, GNR, PIO, CNRG, ICLN, TAN, and FAN. Additionally, the data 

incorporates futures indices for WTI and Gas. 

The descriptive statistics in Table 2 offer initial insights into the characteristics and 

behavior of each variable over the observed period. The mean values reflect the average 

daily returns. Variables such as BJLE and GNR exhibit positive mean values, indicating 

that they tend to deliver positive average returns. Conversely, OCEN, PIO, ICLN, CNRG, 

FAN, TAN, WTI, and Gas have negative mean returns, indicating generally declining 

values over the sample period. 

The variance values reveal the degree of return dispersion or volatility. Higher 

variance values observed for TAN, WTI, and Gas suggest greater variability in these 

assets, highlighting their relatively higher risk. In contrast, lower variance values, such as 

those for BJLE, indicate more stable return behavior. 

Understanding the mean and variance of each variable is crucial for assessing their 

behavior, identifying trends, and evaluating the level of risk or uncertainty associated 

with them. These statistics serve as essential measures for making informed decisions in 

various analytical contexts. 

Table 2. Descriptive statistics of the main variables 

 BJLE OCEN GNR PIO ICLN CNRG FAN TAN WTI Gas 

Mean .0000503 -.0002888 .0000292 -.0001642 -.0008753 -.0007932 -.0005557 -.0011563 -.0002308 -.0012999 

Variance .0095444 .0133759 .0147714 .0126705 .0193319 .0216109 .0145472 .0263751 .0266597 .0495942 

Skewness -0.123 0.316*** -0.268** 0.157 0.524*** 0.366*** 0.419*** 0.446*** -0.644*** -0.325*** 

Ex. 

Kurtosis 0.807*** 1.471*** 0.979*** 1.072*** 1.363*** 0.537** 1.596*** 0.939*** 2.303*** 0.426* 

JB 16.257*** 58.532*** 28.420*** 28.499*** 67.476*** 18.799*** 74.185*** 38.287*** 158.996*** 13.779*** 

ERS -7.086*** -6.111*** -11.478*** -9.734*** -9.792*** -7.960*** -11.202*** -7.604*** -8.144*** -10.692*** 

Q(20) 11.870 10.421 10.681 10.031 17.048* 9.018 17.172* 12.470 18.698** 14.040 

Q2(20) 37.301*** 37.081*** 61.383*** 41.181*** 28.890*** 12.084 34.340*** 26.164*** 48.604*** 27.194*** 

Note: This table reports descriptive statistics for the main variables including mean, variance, 

skewness, excess kurtosis (Ex.Kurtosis), Jarque-Bera test (JB) for normality, Elliott-Rothenberg-

Stock unit root test (ERS), and Ljung-Box Q-tests for serial correlation at lag 20 (Q(20)) and squared 

returns (Q2(20)). Significance levels: *p<0.1, **p<0.05, ***p<0.01. 

Table 3 presents Kendall’s τ rank correlations among ten return series, spanning green 

finance, blue economy, clean energy ETFs, and traditional commodities. The table reveals 

strong, highly significant positive correlations within the green/clean-energy cluster—

e.g., ICLN–TAN and ICLN–CNRG, as well as OCEN–PIO, indicating tightly linked 

performance dynamics. By contrast, correlations between traditional commodities (WTI, 

Gas) and sustainable indices are weak, albeit statistically significant in some cases, 

reflecting minimal co-movement. These results underscore a bifurcation in market 

behavior: sustainable-sector returns move cohesively, suggesting risk contagion within 

green and blue markets, whereas traditional fossil-fuel commodities show limited 

integration. This delineation emphasizes the importance of sector-specific volatility 

analysis and targeted risk management strategies for stakeholders operating across these 

asset classes. 

Table 3. Correlation across the various return series 

kendall BJLE OCEN GNR PIO ICLN CNRG FAN TAN WTI Gas 

BJLE 1.000*** 0.439*** 0.297*** 0.394*** 0.364*** 0.332*** 0.387*** 0.323*** 0.100*** 0.072** 

OCEN 0.439*** 1.000*** 0.455*** 0.709*** 0.578*** 0.553*** 0.602*** 0.514*** 0.071** 0.076*** 

GNR 0.297*** 0.455*** 1.000*** 0.396*** 0.375*** 0.386*** 0.403*** 0.340*** 0.346*** 0.108*** 

PIO 0.394*** 0.709*** 0.396*** 1.000*** 0.483*** 0.487*** 0.531*** 0.419*** 0.039 0.072** 
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ICLN 0.364*** 0.578*** 0.375*** 0.483*** 1.000*** 0.781*** 0.626*** 0.816*** 0.100*** 0.059** 

CNRG 0.332*** 0.553*** 0.386*** 0.487*** 0.781*** 1.000*** 0.521*** 0.783*** 0.108*** 0.067** 

FAN 0.387*** 0.602*** 0.403*** 0.531*** 0.626*** 0.521*** 1.000*** 0.517*** 0.107*** 0.047 

TAN 0.323*** 0.514*** 0.340*** 0.419*** 0.816*** 0.783*** 0.517*** 1.000*** 0.097*** 0.052 

WTI 0.100*** 0.071** 0.346*** 0.039 0.100*** 0.108*** 0.107*** 0.097*** 1.000*** 0.063** 

Gas 0.072** 0.076*** 0.108*** 0.072** 0.059** 0.067** 0.047 0.052 0.063** 1.000*** 

Note: The table presents Kendall rank correlations among return series. Significance levels are 

indicated as: *p<0.1, **p<0.05, *** p<0.01. 

4. Empirical results 

Table 4 presents the dynamic total connectedness among a selection of green and 

blue economy indices, alongside gas and oil indices, indicating how each index influences 

and is influenced by others. The diagonal values (in bold) represent each index's 

connectedness, while the off-diagonal elements show the degree of connectedness with 

other indices. Notably, total connectedness (TO) values provide insights into the overall 

interconnections, with OCEN, GNR, and Gas demonstrating particularly high levels of 

connectedness, indicating their significant roles in influencing the system's dynamics. 

Table 4. Dynamic total connectedness  

 BJLE OCEN GNR PIO ICLN CNRG FAN TAN WTI Gas FROM 

BJLE 27.28 13.16 6.24 11.87 10.69 9.08 10.44 9.36 0.58 1.30 72.72 

OCEN 8.42 19.66 8.75 15.66 12.02 11.07 13.26 10.18 0.42 0.57 80.34 

GNR 5.75 12.43 28.12 10.40 8.63 8.94 10.08 7.62 6.85 1.18 71.88 

PIO 8.23 18.02 8.31 22.61 10.20 10.13 13.25 8.07 0.41 0.76 77.39 

ICLN 6.50 11.57 5.59 8.42 19.54 16.59 13.17 17.67 0.52 0.43 80.46 

CNRG 5.82 11.37 6.01 9.22 17.39 20.48 10.79 17.46 0.66 0.80 79.52 

FAN 7.57 14.00 7.60 11.89 14.56 11.10 21.06 11.26 0.69 0.28 78.94 

TAN 6.19 10.62 5.27 7.39 19.13 18.07 11.09 21.22 0.55 0.47 78.78 

WTI 2.16 1.44 17.02 1.50 2.42 3.24 2.17 3.32 65.10 1.63 34.90 

Gas 2.54 2.62 3.70 2.41 2.27 3.46 1.28 2.58 1.81 77.32 22.68 

TO 53.18 95.23 68.50 78.76 97.32 91.69 85.53 87.51 12.49 7.41 677.62 

Inc.Own 80.46 114.89 96.62 101.37 116.86 112.17 106.59 108.73 77.58 84.74 cTCI/TCI 

NET -19.54 14.89 -3.38 1.37 16.86 12.17 6.59 8.73 -22.42 -15.26 75.29/67.76 

NPT 2.00 8.00 3.00 4.00 9.00 7.00 5.00 6.00 1.00 0.00  
Note: ETFs represent clean energy sectors, while WTI and Gas refer to fossil fuel markets. Values 

indicate return spillovers; diagonal elements show own shocks. “FROM” and “TO” represent 

received and transmitted spillovers. “NET” is the difference (TO − FROM). 

Furthermore, increased own connectedness (Inc.Own) metrics shed light on the 

extent to which each variable contributes to its own connectedness within the system. 

Variables such as OCEN, GNR, and Gas exhibit elevated levels of increased own 

connectedness, suggesting their importance in driving their dynamics. 

Net position total (NET) values indicate the net impact of each variable on the overall 

connectedness. Positive values imply a positive contribution, while negative values 

suggest a negative influence. Notably, OCEN, GNR, and Gas show positive net positions, 

indicating their positive contributions to the overall connectedness of the system. 

Moreover, the ratio of net position total to total connectedness increase (cTCI/TCI) 

provides insights into the relative impact of each variable on the total connectedness 

increase. Ratios greater than 1 indicate that the variable contributes more than the average 

to the increase in total connectedness, highlighting its significance in shaping the system's 

dynamics. BJLE, OCEN, GNR, and PIO exhibit moderate self-connectedness levels (22-

28%), indicating significant but not dominant internal dependencies. Green indices, such 

as ICLN, CNRG, FAN, and TAN, demonstrate high levels of connectedness with one 
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another, reflecting strong interdependence among sustainable energy indices. WTI and 

Gas display unique characteristics: Gas has a high internal connectedness (77.32%), 

indicating substantial self-containment, while WTI exhibits relatively lower internal 

dependence (65.10%) and higher external connectedness, particularly with GNR (17.02%), 

pointing to a broader influence within the network. The net connectedness (NET row) 

shows that ICLN and OCEN are net transmitters, indicating they exert more influence 

than they receive, while BJLE, WTI, and Gas are net receivers, being more influenced by 

others. The Total Connectedness Index (TCI) of 75.29% indicates a high degree of 

interconnectedness across all indices, with notable distinctions between green energy 

indices and traditional fossil fuel sources. 

The dynamic total connectedness depicted in Figure 1 provides a comprehensive 

overview of the evolving Total Connectedness Index (TCI) over time. Notably, the TCI 

exhibits pronounced fluctuations, ranging between 90% and 100%, indicative of the 

consistently high levels of connectivity among the assets under investigation. 

Subsequently, in examining the dynamic net total connectedness illustrated in the 

subsequent figure, we observe a considerable degree of fluctuation between net receiver 

and net transmitter statuses across the variables. However, these fluctuations alone do not 

yield conclusive insights. Therefore, we turn our attention to analyzing the net pairwise 

total connectedness, as depicted in the following plot. 

Figure 1. Total Dynamic Connectedness 

 

The analysis of net pairwise total connectedness offers a more granular 

understanding of the relationships between individual pairs of variables. By assessing the 

strength and directionality of connections between specific pairs, we can glean insights 

into the underlying dynamics of the system. This allows us to identify key relationships, 

potential areas of influence, and patterns of interaction among the studied assets. 

Ultimately, this analysis facilitates more informed decision-making processes in various 

domains, including risk management, portfolio optimization, and policy formulation. 

Figure 2 illustrates the dynamic net status of each index, providing insights into their 

roles as either net transmitters or receivers of shocks over time. The analysis reveals that 

oil, gas, GNR, and BJLE maintain a consistent status as net receivers, meaning they 

predominantly absorb shocks from other indices rather than transmit them. In contrast, 

indices related to green energy, including CNRG, OCEN, ICLN, TAN, and FAN, function 

as net transmitters, indicating that they are primary sources of influence within the 

network. Notably, PIO demonstrates a variable pattern, alternating between being a net 
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transmitter and a net receiver. This shifting behavior for PIO suggests a dynamic role in 

the network, potentially responding to market fluctuations or external shocks differently 

than other indices. 

Figure 2. Net total directional connectedness 

 

The net pairwise connectedness in Figure 3 analysis provides a detailed glimpse into 

the intricate web of relationships among the variables under examination. Results should 

be more fully explained and need further in-depth discussion. The discussion should 

include further discussion on the previous findings about the existing ones. It would be 

better to explain the results according to clear economic intuition or theoretical 

foundation, not just focus on discovering some empirical patterns. Notably, certain 

variables such as ICLN emerge as pivotal nodes, displaying robust connectivity with key 

entities like oil, gas, and GNR. This strong linkage could stem from the reliance on 

renewable energy technologies in traditional energy markets, as oil and gas prices 

influence the relative cost-competitiveness of renewables. Rising oil prices, for example, 

often make renewables more attractive, thereby increasing investment in clean energy 

sectors, such as ICLN. Moreover, ICLN’s robust connections to GNR highlight the 

interdependence within renewable energy markets, where shifts in green finance can 

drive spillovers across various clean energy-focused entities. Similarly, OCEN stands out 

for its significant ties with the oil and gas sectors. This connection may signal a transitional 

phase for the ocean economy as it transitions toward greener practices, where shifts in 

traditional energy markets create ripple effects across the sector. 

Figure 3. Net-Pairwise Directional Connectedness 
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Conversely, the analysis reveals weaker connections between GNR and PIO, as well 

as CNRG and OCEN, TAN, and FAN, which explain the results by clear economic 

intuition or theoretical foundations. Each index may represent unique technologies with 

distinct market drivers and regulatory policies, leading to limited direct 

interdependencies. For example, solar and wind sectors (represented by TAN and FAN) 

are influenced by unique factors such as technology-specific subsidies and weather 

conditions, resulting in weaker spillover effects with other renewable sectors. Similarly, 

the limited connection between water resource indices and green energy highlights the 

sectoral independence, as water resource management operates primarily outside the 

direct influence of the energy market. These findings align with economic intuition, 

suggesting that while certain green finance and renewable sectors are interdependent, 

others operate under sector-specific dynamics that moderate their interconnectedness. 

This understanding offers a nuanced perspective on how sectoral characteristics and 

energy dependencies influence the transmission of shocks and correlations across 

sustainable finance and energy markets. 

Furthermore, these findings demonstrate that understanding these strong 

connections in the realm of risk management enables more precise identification and 

mitigation of risks, particularly within energy-related portfolios. Portfolio optimization 

strategies can leverage the strong connectivity between OCEN, oil, and gas to potentially 

enhance overall portfolio performance through strategic allocation. Meanwhile, insights 

gleaned from the weaker connections shed light on sectors or assets that exhibit relatively 

independent movements, guiding diversification efforts and providing valuable market 

analysis insights. 

Furthermore, the implications extend beyond investment strategies. Policymakers 

and industry stakeholders can leverage the insights gained from this analysis to develop 

more informed energy policies and strategies. By understanding the interdependencies 

among energy-related variables, policymakers can better allocate resources, plan 

infrastructure development, and design sustainable initiatives. In essence, the net 

pairwise connectedness analysis serves as a powerful tool for decision-makers in financial 

and energy sectors, offering invaluable insights that drive effective risk management, 

portfolio optimization, market analysis, and policy formulation endeavors. 
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To draw deep conclusions, we examine the total and net connectedness through 

quantiles, as shown in Figure 4. Precisely, the heatmap depicted in Figure 4 was generated 

using a 200-day rolling window and a 20-day ahead forecast based on the QVAR (1) 

model. The timeline is represented on the x-axis, and the quantiles, which range from 0.05 

to 0.95 and are iterated at 1% intervals, are plotted on the y-axis. Warmer segments show 

higher levels of connectedness, whereas lighter regions present lower levels. Dynamic 

shocks emanate from both significantly positive (above the 75th percentile) and negatively 

shifted assets (below the 25th percentile). Our results demonstrate robust interconnections 

across almost the entire sample period, with particularly high levels of connectedness 

observed from the second half of 2022 through early 2023. This period of heightened 

connectedness is followed by alternating phases of high and lower connectedness, 

persisting intermittently until the end of the period.  

Figure 4. Dynamic total connectedness 

 

Note: The heatmap was generated using a 100-day rolling window and a 20-day ahead forecast 

based on the QVAR(1) model. The x-axis represents the timeline, and the y-axis reports the 

quantiles. The quantiles are from 0.05 to 0.95 with a 1% iteration. The color gradient in the heatmap 

ranges from light yellow (low level of connectedness) to dark red (high level of connectedness) 

Overall, these findings highlight that, despite fluctuations, the overall 

interconnectedness within the indices remains stable, with notable peaks during periods 

of heightened market volatility, which reinforces the robustness and resilience of the 

observed relationships. It is also important to highlight that this dynamic connectedness 

shows a symmetrical pattern. Additionally, the fluctuations in the 50% quantile, which 

represents the network’s average Total Connectedness Index (TCI), show a cyclical 

pattern. Spillovers were particularly intensified during 2022 and the fourth quarter of 

2023.The timeline is represented on the x-axis, and the quantiles, which range from 0.05 

to 0.95 and are iterated at 1% intervals, are plotted on the y-axis. Warmer segments show 

higher levels of connectedness, whereas lighter regions present lower levels. Dynamic 

shocks emanating from both significantly positive (above the 75th percentile) and 

negatively shifted assets (below the 25th percentile) demonstrate robust interconnections 

across the entire sample period. It is also important to highlight that this dynamic 

connectedness shows a symmetrical pattern. Additionally, the fluctuations in the 50% 

quantile, which represents the network's average Total Connectedness Index (TCI), show 

a cyclical pattern. Spillovers were particularly intensified during 2022 and the fourth 

quarter of 2023 
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Figure 5. Net Directional Connectedness 

        

The analysis of net total connectedness in Figure 5 across quantiles unveils a dynamic 

landscape where variables exhibit shifting roles as net transmitters or receivers over time 

and quantiles. Notably, oil and gas consistently assume a net receiver status throughout 

most of the study period, while PIO and BJLE display such status during specific years 

(especially during 2023). Conversely, OCEN, GNR, ICLN, CNRG, FAN, TAN, and Gas 

consistently act as weak net transmitters across the entire study period, as indicated by 

median quantiles. Moreover, the asymmetrical net connectedness between lower and 

upper quantiles underscores non-linear dynamics within the system. These insights hold 

significant implications for risk management, portfolio optimization, market analysis, and 

policy formulation, enabling stakeholders to navigate market complexities and make 

informed decisions in various domains. 

The interpretation of the time-frequency connectedness plot suggests a dynamic 

interplay between short-term and long-term connectedness among the variables. While 

the overall trend indicates that total connectedness leans towards the short term, this can 

be attributed to the higher frequency of fluctuations and interactions occurring within 

shorter time intervals. Therefore, the dominance of short-term connectedness may reflect 

the rapid transmission of information and the heightened sensitivity of asset prices to 

short-term events. Additionally, this dominance can be attributed to events such as 

economic announcements, geopolitical crises, policy shifts, or fluctuations in market 

sentiment, which often generate immediate price reactions. For instance, sudden changes 

in oil prices, regulatory updates affecting renewable energy, or news related to 

environmental policies can cause quick adjustments in green finance and energy markets. 
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These fast-moving events lead to short-term interconnectedness, as the markets react 

rapidly to new information. The dominance of short-term connectedness reflects the 

immediate responsiveness of markets to information, shocks, and speculative 

behavior,Baruník et al. (2018), Cui et al. (2021), Umar et al. (2022). Economic events, 

whether related to changes in energy prices, policy shifts, or broader market fluctuations, 

tend to have rapid and widespread effects on the interconnectedness between green 

finance, energy commodities, and the blue economy. Theoretical frameworks, such as the 

Efficient Market Hypothesis, time-varying parameter models, and behavioral finance, all 

provide insights into why short-term interactions are more pronounced in this context. 

This understanding is crucial for market participants looking to navigate the volatility and 

short-term dependencies within these interconnected sectors. While the overall trend 

indicates that total connectedness leans towards the short term, there are specific periods 

where this relationship shifts. During certain intervals (specifically, 2022 and once at the 

beginning of 2023), the short-term connectedness exceeds the total connectedness, 

indicating heightened interactions and dependencies among the variables over shorter 

time horizons. Conversely, in other periods (mid-2023 and at the beginning of the fourth 

quarter of 2023), the long-term connectedness exceeds the total connectedness, suggesting 

that the relationships between variables are more enduring and pronounced over longer 

durations. These fluctuations in the dominance of short-term and long-term 

connectedness underscore the evolving nature of interactions within the system, reflecting 

varying degrees of influence and correlation over different time scales. Understanding 

these dynamics is crucial for formulating effective risk management strategies, optimizing 

portfolio allocations, and making informed decisions in dynamic financial environments. 

Figure 6. Dynamic Total Connectedness by frequencies 
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Figure 7. Dynamic Total Net Connectedness by frequencies 

 

 

Figure 8. Dynamic Pairwise Connectedness by frequencies 
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5. Conclusion and discussion 

This study provides a comprehensive analysis of the interconnectedness between 

green finance and blue economy stock indices, and oil and gas indices, from October 26, 

2021, to January 5, 2024. By employing TVP-VAR-based connectedness analysis across 

various quantiles, and extending it to the QVAR model, we uncover nuanced responses 

of these variables to structural shocks, particularly during extreme market conditions. The 

results reveal consistently high levels of total connectedness, with fluctuations between 

90% and 100%, reflecting the significant and persistent connectivity among the assets 

under investigation. This supports the findings of Lorente et al. (2023), who also 

highlighted the substantial influence of green financial assets and clean energy on 

financial markets. A key finding of our study is the dynamic net total connectedness, 

which demonstrates considerable fluctuations between net receiver and net transmitter 

roles across different variables. Specifically, oil and gas indices are consistently net 

receivers of shocks throughout the study period, while PIO and BJLE assume this role 

only during specific years (2022 and 2023). This aligns with the work of Umar et al. (2021) 

and Rehman et al. (2023), who noted that oil indices act as net receivers of volatility during 

extreme market conditions. On the other hand, clean energy indices such as OCEN, GNR, 

ICLN, CNRG, FAN, and TAN maintain weak net transmitter characteristics, particularly 

in the median quantiles. 

Our study also highlights non-linear dynamics, with asymmetrical net connectedness 

observed between the lower and upper quartiles. These non-linear patterns suggest that 

the strength and direction of spillovers differ under varying market conditions. The 

presence of such asymmetry underscores the need for a deeper understanding of how 

different economic factors interact over time, particularly during periods of heightened 

market stress, as seen in 2022 and the fourth quarter of 2023. This finding extends the work 

of Dogan et al. (2022) and Gao et al. (2024) by demonstrating that this asymmetry not only 

emerges during stable periods but also intensifies under crisis conditions—a nuance 

previously unexplored. 

In terms of practical implications, our findings offer valuable insights for risk 

management, portfolio optimization, and market analysis. The identification of consistent 

net receivers and transmitters of shocks provides crucial information for energy-related 

portfolios, helping investors manage risk exposure and enhance portfolio performance. 

The study also provides actionable insights for policymakers and industry stakeholders, 

who can leverage these findings to design more effective energy policies and strategies, 

contributing to sustainable and resilient economic development. 

By advancing the understanding of the interconnectedness between green finance, 

the blue economy, and energy commodities, this study enriches the current 

understanding of market dynamics. It provides a framework for navigating the 

complexities of financial and energy markets. The findings underscore the need for 

continuous monitoring of these interconnected markets, particularly in light of their 

increasing importance for both economic stability and achieving sustainability goals. 

6. Policy and practical implications 

In light of the study's findings, it is crucial to identify specific areas where current 

policies fall short and propose actionable recommendations for addressing these 

deficiencies. Given the increasing interconnectedness between green finance, the blue 

economy, and energy commodities, it is evident that existing policy frameworks often lack 

the flexibility and foresight to effectively manage these dynamic relationships. 

Firstly, current energy policies often treat green finance and clean energy as separate 

entities, with limited consideration of their synergies and the potential risks associated 

with their interconnectedness. As our study reveals, green finance and clean energy 

indices demonstrate substantial spillover effects on each other, especially during periods 

of market turbulence. Therefore, policymakers should establish a more integrated 
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framework that encourages alignment between green finance initiatives and energy 

policies. This can be achieved either by incentivizing investments in green energy sectors 

through targeted subsidies or tax incentives, or by encouraging financial products and 

portfolios that combine clean energy investments with green finance instruments. In this 

framework, policymakers should establish inter-ministerial committees that focus on 

integrating financial and energy policies, alongside creating a regulatory sandbox to test 

novel green finance and energy solutions. This integration would not only strengthen the 

financial resilience of the green economy but also enhance the long-term sustainability of 

energy transition goals. 

Secondly, policymakers should improve risk management and diversification for 

green energy portfolios. Indeed, financial markets, especially those focused on energy 

commodities, often lack sufficient mechanisms for managing risk, particularly in the 

context of extreme market fluctuations and environmental shocks. Hence, policymakers 

should encourage the development of more sophisticated risk management tools that 

account for the complex, non-linear relationships between green finance, blue economy 

indices, and energy commodities. This can be achieved either by promoting the 

development of financial instruments, such as green bonds, ESG-focused derivatives, and 

climate risk-adjusted portfolios, or by mandating disclosure requirements for climate-

related financial risks and their impact on energy markets. In this context , policymakers 

should introduce legislation requiring financial institutions to integrate climate risk 

assessments into their investment strategies and portfolio management processes. This 

collaboration among financial regulators, financial institutions, and climate experts aims 

to develop suitable risk models and enhance financial stability within the green energy 

sector, ultimately fostering greater investor confidence. 

Thirdly, this circumstance necessitates promoting global cooperation on green 

finance and energy policy: Green finance and energy policies are often fragmented at the 

national level, with limited global coordination. This can lead to inconsistent outcomes 

and hinder the achievement of global sustainability goals. Hence, policymakers should 

strengthen international cooperation to ensure that green finance and energy transition 

efforts are globally coordinated and aligned. This could be achieved by supporting global 

frameworks for green finance and carbon markets, such as the Paris Agreement, to align 

national policies with global climate goals, or by encouraging multilateral agreements on 

clean energy investments and financing, particularly for developing economies. in this 

context, policymakers should engage in international dialogues and forums, such as the 

UN Climate Change Conference (COP), to push for stronger commitments to integrated 

green finance and energy policies. This strategy will enhance global alignment on energy 

transition and green finance goals, thereby amplifying the effectiveness of national 

policies and helping to meet international climate targets. 

In addition to policy changes, the findings of this study offer practical guidance to 

market participants and stakeholders in the energy and financial sectors: For example, the 

identification of consistent net transmitters and receivers of shocks (e.g., gas and oil as net 

receivers; certain clean energy indices as transmitters) provides actionable insights for 

portfolio diversification, risk hedging, and tail-risk management—especially in volatile or 

crisis-prone periods. 

For financial institutions, our study highlighted dynamic and asymmetric spillovers 

across quantiles, emphasizing the importance of incorporating climate scenario analysis 

and stress testing into portfolio strategies. Financial institutions should refine their 

modeling tools to better capture non-linear dependencies across green and traditional 

energy assets. Furthermore, clean energy and blue economy enterprises can utilize our 

findings to gain a deeper understanding of how financial market volatility affects their 

access to finance. Aligning business strategies with green finance trends may improve 

funding prospects and investor appeal. 
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7. Limitations and future recommendations 

While this study provides valuable insights into the interconnectedness between 

green finance, the blue economy, and energy commodities, some limitations must be 

acknowledged to contextualize the findings, especially in the methodology and 

exogenous shock integration: The use of TVP-VAR and QVAR models provides robust 

results but may not fully capture nonlinearities or higher-order dependencies that other 

advanced models like machine learning techniques could uncover. In addition, while the 

study identifies periods of heightened connectedness due to events like the COVID-19 

pandemic and geopolitical events, the analysis does not explicitly model the impact of 

other exogenous shocks such as financial crises or policy changes. To build on these 

findings and address existing limitations, future research could explore several areas. 

Firstly, we can employ advanced nonlinear econometric or machine learning models, such 

as Deep Neural Networks, to uncover hidden patterns and improve the predictive 

accuracy of interconnectedness measures. Secondly, we can Conduct scenario-based 

analyses to isolate the effects of distinct exogenous shocks, such as geopolitical crises or 

major policy shifts (e.g., carbon taxes), which would enhance understanding of how these 

events reshape market interconnectedness. Finally, we can improve our study by 

integrating investor sentiment and behavioral biases, and exploring how these variables 

influence connectedness among green finance, energy commodities, and blue economy 

indices. This could provide new perspectives on market dynamics. 
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