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Abstract: This paper presents a first connectedness analysis using the novel Climate Policy
Uncertainty Index (CUI) proposed by Gavriilidis (2021), Green equity and bonds (GE and GB -
Green investments), and Dirty equity and bonds (DE and DB - dirty investments). Using data
covering the years from 2007 to 2021, we show that the effect of climate policy uncertainty as
measured by the CUI is far from constant through time. While static analysis indicates that green
investments are isolated from fluctuations in the CUI, an inspection from a dynamic perspective
shows that CUI is mostly a transmitter of shocks. This role as a transmitter is evident primarily in
two crises since 2008: the subprime crisis and the European debt crisis. Interestingly, during recent
years, the influence of climate change policy uncertainty as measured by the CUI has weakened,
and it has even become a net recipient of shocks.

Keywords: climate risk, uncertainty, green investment, green bonds, green equity, returns,
volatility

JEL classifications: G14, G15, G1, Q2, Q4.

1. Introduction

Climate change has become a key issue in recent years, having become viewed as one of
the century's leading human and environmental issues. As a result, addressing climate
change has become a global concern and challenge. This increasing awareness has
facilitated action, rules, and reforms to combat climate change nationally and globally.
These may, in turn, induce changes and adjustments in the practices and business
strategies of firms and consequently affect their performance. Besides the potential
effects of such steps, the uncertainty associated with these reforms—and, more
specifically, with the choice of policies to be implemented and how they will influence
financial markets and the real economy—is also significant (Fernando et al., 2021;
Gavriilidis, 2021). For example, the United States withdrew from the Paris Climate
Agreement under the Trump administration and rejoined after President Biden
assumed power, even taking on some new climate commitments. Two novel indices
were recently created to track the dynamics of climate risk policies. Engle et al. (2020)
have developed the WS] Climate Change News Index, which tracks the climate news
coverage in The Wall Street Journal (WS]J). Gavriilidis (2021) extends this idea by
constructing a novel Climate Policy Uncertainty (CUI) Index by using a broader scope of
news coverage, along with a focus on news discussing uncertainty related to climate
policy.

In this study, we examine the connectedness between this novel CUI, green equity,
green bonds (GE and GB — Green investments), and dirty equity and bonds (DE and DB
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— dirty investments) for the period from 2007 to 2021. We use both static and dynamic
approaches to identify the net transmitters and net receivers of risk spillovers. This will
help us to understand the relationships between green and dirty investments and their
possible mutual dependence, as well as their interaction with the CUI.

A careful examination of the literature suggests a relatively new but fast-growing
body of work on the static and dynamic interactions between the returns and volatilities
of traditional financial assets and green investments (Ferrer et al.,, 2021; Pham and
Nguyen, 2021; Reboredo et al., 2020; Shahbaz et al. 2021). Our paper joins this line of
research, particularly in light of the growing interest in the hedging role of green
investments in the pandemic era (Arif et al. 2021; Dutta et al. 2021). More specifically,
our paper contributes to the portion of this scholarship that examines the spillovers
across different uncertainty measures, green investments, and traditional asset classes.

Ferrer et al. (2018) examine the time and frequency dynamics of connectedness
among stocks of U.S. clean energy companies, high technology stocks, oil prices, the
default spread, treasury bond yields, and volatility indices (The Chicago Board Options
Exchange Volatility Index — VIX and the U.S. Treasury Note Volatility Index — TYVIX).
The stock prices of high technology and renewable energy companies and the VIX
emerge as net transmitters of return and volatility spillovers to other variables.

Lundgren et al. (2018) study the connectedness across renewable energy stock
returns, traditional asset classes, and several sources of uncertainty: VIX, the Equity
Pickup (EPU), and financial stress (FS). The uncertainty measures, and renewable energy
stocks are found to be net transmitters of shocks to other variables. Broadstock and
Cheng (2019) analyze the correlations between green and conventional bonds and their
determinants, with the correlations shifting from negative to positive in mid-2013.
Correlations are sensitive to macro-level factors, including the VIX and EPU.

Pham and Nguyen (2022) analyze the connectedness between three uncertainty
indices (the VIX, the Crude Oil Volatility Index — OVX, and EPU) and green bond
returns. They show that there is only a small level of connectedness between uncertainty
and green bond returns during periods of low uncertainty, while the spillovers from
uncertainty measures to green bond returns are significantly higher during periods of
high uncertainty (such as the COVID-19 pandemic).

Saeed et al. (2021) analyze return spillovers across clean/green and dirty energy
assets at different quantiles. Return connectedness is higher in extreme values, both low
and high, and varies with time. VIX, OVX, TYVIX, and EPU have different effects on
connectedness for low and high extreme values. For example, EPU positively affects
connectedness at the middle quantile, while VIX has a positive (negative) impact at the
upper (middle) quantiles. Finally, Liu et al. (2021) explore the spillover effects of
economic uncertainty generated by COVID-19 (measured by the newspaper-based
Infectious Disease Equity Market Volatility Tracker) on the U.S., European, and global
renewable energy stock indices. Economic uncertainty transmits spillovers to renewable
energy stock volatilities and returns. The impact on volatilities is higher than on returns.
The spillover from uncertainty to returns (volatilities) is concentrated at high (low)
frequencies. Our study contributes to this main strand in the literature by examining an
uncertainty index that may be more related to returns than traditional uncertainty
indices, such as the VIX or the EPU, in terms of climate risk and climate policy
uncertainty.

To our knowledge, we are the first to explore the connectedness between the CUI,
green equity and bonds, and dirty equity and bonds by using the time-varying
parameter vector autoregressive model (TVP-VAR) of Antonakakis, Chatziantoniou, &
Gabauer (2020). The CUI has been used in only a limited number of studies. Gavriilidis
(2021) explores the relationship between this index and CO2 emissions. Shocks to the
CUI lead to lower emission levels on an aggregate basis. On a sectoral level analysis, the
biggest impact is observed within the residential and commercial sectors, and the
duration of the impact varies across industries. Apergis et al. (2021) find that the CUI
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can predict the air travel demand of U.S. citizens to eight overseas destinations. In this
study, we find that while static analysis indicates that green investments are not
influenced by climate policy uncertainty, dynamic analysis shows that the CUI
represents a net transmitter of both return and volatility spillovers. This phenomenon is
evident during the 2007-2008 subprime crisis and the European debt crisis. This
transmission of risk spillovers by the CUI gets weaker over time, and it even functions
as a net receiver during the COVID-19 period.

The rest of the paper is organized as follows. In Section 2, we present and explain
the data. In Section 3, we explain the methodology. In Section 4, we present and discuss
the findings. The last section concludes the paper.

2. Data

The data covers the period from January 2007 to April 2021. The choice of this period
was mainly due to the availability of a consistent series of data points. This period
contains key economic events and encompasses the 2007—2008 subprime crisis, large fluctuations
in oil prices, the European sovereign debt crisis, and, more importantly, the COVID-19 pandemic.
Therefore, our investigation offers an attempt to consider the interaction between green and dirty
asset classes and fluctuations in the CUI proposed by Gavriilidis. Textual analysis has been
recently used to form indices to quantify uncertainty and risk on a macro level (Baker et
al., 2016; Caldara & lacoviello, 2018). The CUI follows the construction by Baker et al. (2016)
of the Economic Policy Uncertainty Index, which is based on the frequency of
newspaper coverage of terms from three categories pertaining to uncertainty, the
economy, and policy. Gavriilidis (2021) searches for terms related to uncertainty, climate,
energy, and policy in articles from eight leading newspapers in the United States. The
number of articles per month containing these terms is then scaled by the total number
of articles per month. This frequency measure is then standardized to have a unit
standard deviation and finally normalized and adjusted to have a mean value of 100 for
the entire period. Figure 1 shows the CUI over time. The peaks are associated with
several significant events, such as the global strikes in September 2019 ahead of the UN
Climate Action Summit. At this time, 24 states sued the Trump administration for
revoking their right to set emission standards, as the Trump administration planned to
scrap Obama’s Clean Water Act reforms. In addition, the CUI is also higher during
turbulent times such as the Dot-com bubble, the subprime crisis, and the COVID-19
pandemic.

Figure 1. Climate Policy Uncertainty index
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Notes: The above Figure depicts the climate policy uncertainty Index by Gavriilidis (2021). For
further information please refer to: https://www.policyuncertainty.com/climate_uncertainty.html.
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As a surrogate for green and dirty assets classes, we collect the following data series:
the Bloomberg U.S. aggregate green bond index (GB) as the proxy for green bonds, the
Wilderhill clean energy index (GE) representing the green equity (stocks), the iBoxx USD
Oil & Gas index bonds (DB) as a proxy for “dirty” bonds, the iShares U.S. Oil & Gas
Exploration & Production ETF (Ferrer et al. [2018] and Saeed et al. [2021] among others
use one or more of these series). (DE) as a proxy for “dirty” equity. Finally, as mentioned
above, CUl is the Climate Policy Uncertainty Index proposed by Gavriilidis (2021).

Table 1 provides descriptive statistics for returns from the main key indices under
consideration through the entire period under investigation (for brevity, we have not
reported the summary statistics of the volatility series; the findings are available upon
request). For each series of returns, we compute the first difference in the log price,
while for CUI, we compute the first difference in the closing prices. In Figure 2, we
present the index returns.

Table 1. Descriptive Statistics

GB GE DB DE CUI
Mean 0.00031 -0.00008 0.00563 0.00059 0.02541
Median 0.00136 0.00531 0.00577 0.00498 -2.16500
Maximum 0.08438 0.38631 0.06450 0.36931 488.05000
Minimum -0.18441 -0.56685 -0.07488 -0.38657 -464.26000
Std. Dev. 0.02505 0.10046 0.01671 0.09833 80.84704
Skewness -3.00667 -0.84294 -1.10825 -0.52555 0.15198
Kurtosis 24.23905 9.44177 9.23639 5.45814 16.06622
Jarque-Bera 3451.408 314.0647 3.10E+02 50.62637 1209.964
Probability 0.000 0.000 0.000 0.000 0.000
N 170 170 170 170 170

Notes: The table shows the summary statistics for our key variables. GB is the Bloomberg U.S.
aggregate green bond index as the proxy for green bonds, GE is the Wilderhill clean energy index
representing the green equity (stocks), DB stands for “dirty” bonds and is represented by the
iBoxx USD Oil & Gas index bonds, DE is the iShares U.S. Oil & Gas Exploration & Production ETF
as a proxy for “dirty” equity and finally CUI is the Climate Policy Uncertainty Index of Gavriilidis
(2021). The descriptive statistics reported here are calculated on a basis. Log differences for returns
series are computed for the GB, GE, DB and DE, and first differences for the CUI The reported
descriptive statistics are Mean, Median, Maximum, Minimum, Skewness, Kurtosis (Kurt), the
Jarque-Bera test statistic and its corresponding probability, and finally, the total number of
observations for the common sample is 170 (N).

The statistics in Table 1 imply that all series are leptokurtic, characterized by excess
positive kurtosis, which hints at heavy tails and peakiness of the distribution. The
findings also show negative skewness for all series, excluding the CUI index, which has
positive skewness. In addition, variability in equity is higher than in bonds, as implied
by both the minimum-maximum range and the standard deviation. Surprisingly, the
average return of green equity is the lowest, while “dirty” bonds have the highest
average return. Notably, green equity has the highest standard deviation, while “dirty”
bonds have the lowest standard deviation. Overall, our proxies for equity investment are
more volatile than their debt counterparts.

Finally, the Jarque-Bera (JB) test rejects the assumption of normality in all series,
while the Augmented Dickey-Fuller and Phillips-Perron unit root tests confirm a
stationary process in both the returns and volatility series. For brevity, we have not
included the unit root test results, but these are available upon request.
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Figure 2. Return series
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Notes: Log differences for returns series are computed for the GB, GE, DB and DE, and first
differences for the CUI GB is the Bloomberg U.S. aggregate green bond index as the proxy for
green bonds, GE is the Wilderhill clean energy index representing the green equity (stocks), DB
stands for “dirty” bonds and is represented by the iBoxx USD QOil & Gas index bonds, DE is the
iShares U.S. Oil & Gas Exploration & Production ETF as a proxy for “dirty” equity and finally CUI
is the Climate Policy Uncertainty Index of Gavriilidis (2021).

3. Methodology

Diebold and Yilmaz (2009, 2012, 2014) (hereafter, DY) pioneered the use of Forecast
Error Variance Decomposition (FEVD) as an interpretation for the connectivity between
the variables of a certain system. Using a rolling-window VAR-based approach, they
construct the familiar connectedness measures from the FEVD. Due to its novelty, the
VAR approach proposed by Diebold and Yilmaz (2009, 2012, 2014)—the DY
approach—has been the workhorse in connectedness studies. Antonakakis,
Chatziantoniou, and Gabauer (2020) took a step forward to improve the DY approach by
proposing a dynamic connectedness procedure based on the TVP-VAR method.
Antonakakis, Chatziantoniou, and Gabauer (2020) applied a time-varying parameter
vector autoregressive model (TVP-VAR) based on a time-varying covariance structure as
proposed by Primiceri (2005) and managed to overcome several flaws of the common
DY approach. One of these weaknesses is the requirement for a random length of rolling
time window. By contrast, the approach proposed by Antonakakis, Chatziantoniou, and
Gabauer (2020) utilizes a time-varying parameter that avoids the potential loss of
observations, is more robust in its treatment of outliers, and is critical in the case of small
time-series data (for a more detailed discussion of the merits of the TVP-VAR approach,
please refer to Antonakakis, Chatziantoniou, and Gabauer [2020]). Therefore, this
approach is particularly suitable for our study of dynamic connectedness and has been
employed in several recent connectedness studies (e.g., Mensi et al., 2022; Tiwari et al.,
2022; Pham & Nguyen, 2022; Guo & Zhou, 2021; Yousaf et al. 2022).
The TVP-VAR(p) model can be represented as:

o 1Qa~ (0%) 1
v Qo ~ (0, ). ()

= _1+

= _1+
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where Y; and Y}, are NxI and Npx1 vectors, respectively, and ()., represents all available
information in the period t-1. If Y, is covariance stationary Eq. (1) can be transformed to
its vector moving average (VMA) representation as follows in Eq. (3) below:

- 20 ®

where ©; is an NxN dimensional matrix.

To achieve the dynamic connectedness measures, we use the time-varying
parameters and variance-covariance matrices of the TVP-VAR model in the measure of
connectedness proposed by Diebold and Yilmaz (2009, 2012, 2014). Accordingly, the
elements of the dynamic H-step generalized variance decomposition matrix D#" =[d;; 8"
can be defined as:

2

' 2(e.ze )’
where g;;;" is the j™ diagonal element of X,. The normalized terms

= ©)

=1

are used to determine the dynamic total directional connectedness, net total directional
connectedness, and total connectedness. The total connectedness index (TCI) is:

=—=17 = x100. (6)

The directional spillover received by variable i from all other variables j, is measured
as:

=1

=—=L% %100. (7)

Similarly, the spillovers received by variable j from all other variables i, is calculated
as:

=_=L% . x100. (8)

To measure the net pairwise directional connectedness, we subtract the total directional
connectedness FROM others from total directional connectedness TO others. This can be
considered as the role of variable i has in the framework of the analyzed system. That is,

N ©)
At last, the net pairwise directional connectedness is defined as:
=( — )x100. (10)
If the value is greater than zero, this implies that variable i dominates variable j;
otherwise, the latter dominates the former.
4. Empirical Findings
We begin our discussion of results with a static connectedness framework and then turn

to a dynamic analysis of connectedness across time. Table 2 presents the static analysis.
We will discuss the dynamic connectedness analysis using Figures 4-6.

4.1.Static spillover analysis

Our static analysis deals with the estimation of the interaction between five system
variables. In Table 2, we present a static spillover analysis over the full period. The
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diagonal values refer to the “own” variation for each variable itself and are a measure of
self-dependence. “TCl” is a measure of the degree of total connectedness in the system.
The row “TO” represents the total spread of shocks that a variable delivers to each of the
other variables in the system, while the last column, “FROM,” represents the total
shocks that a certain variable receives from its counterpart system variables. Subtracting
the difference between the contribution TO and the contribution FROM yields the
“NET” row, which refers to the net-pairwise summation of the directional spillovers. A
negative (positive) value indicates a net receiver (transmitter) of shocks.

Table 2: Static Connectedness Tables

Panel A: Static Connectedness — Returns

GB GE DB DE CUI FROM
GB 48.7 7.9 359 6.8 0.6 51.3
GE 8.3 55 16 20.3 0.4 45
DB 30.8 12 41.9 14.8 0.5 58.1
DE 7 20.5 19.2 53.1 0.2 46.9
CUI 0.9 0 0.4 0.1 98.5 1.5
TO 47.1 40.4 71.4 42.1 1.7 202.8
NET -4.2 -4.6 13.3 -4.8 0.2 TCI=40.56
Panel B: Static Connectedness — Volatility of Returns
GB GE DB DE CUI FROM
GB 45.1 11.9 26.6 15.9 0.4 54.9
GE 12.8 57.3 15.3 14.5 0 42.7
DB 24.2 11.6 41.5 22.1 0.6 58.5
DE 14.6 13.5 21.6 47.8 2.4 52.2
CUI 0.6 0.1 1.3 5 93 7
TO 52.2 37 64.9 57.7 3.5 215.2
NET -2.7 -5.6 6.4 5.4 -3.5 TCI=43.04

Note. This table shows the connectedness measures between the system variables under a
TVP-VAR approach. VAR order is 1 as determined by the Schwarz information criterion. Panels A
and B report the findings for the Returns, and the volatility of returns. The sample period is
January 2007-March 2021. The table shows the estimated contribution to a 10-day-ahead forecast
error variance decomposition. The bold diagonal elements are the (individual) variance
percentages for each variable. TCI is the total connectedness index. The off-diagonal values
illustrate the bi-directional interaction between the different system variables. The row “From”
shows the total spillovers absorbed by a certain variable from all system variables, and “To” is the
spillover of shocks by a certain variable to all other variables.

To determine the degree of system connectivity, we look at the total spillover index.
In Table 2, the TCI (right bottom corner) is 40.56% for the yield curve components and
43.04% for the volatility series. According to these relatively high values, and as
expected, the system of green and dirty investments (both bonds and equity) and the
CUI are strongly connected. More specifically, around 40% of the variation in the returns
of green and dirty investments and climate policy uncertainty is explained by their
co-movements. In terms of return spillovers TO the system, dirty bonds (71.4%) have the
strongest influence on other system variables, but also, when we look at the spillover
that each variable receives FROM the system, dirty bonds have the highest risk
absorption (58.1%). Similarly, when we look at the volatility spillovers presented in
Panel B, dirty bonds remain the dominant variable in terms of delivering shocks TO
(64.9%) the system as well as absorbing shocks from FROM (58.5%) the system. Lastly,
looking at the last NET row, we observe that dirty bonds (DB) are the most influential
variable. For both the returns and volatility examinations, DB remains a significant
transmitter. On the other hand, dirty equity (DE) is a net receiver of spillovers in the


https://crossmark.crossref.org/dialog/?doi=10.61351/mf.v3i1.230&domain=mf-journal.com
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-1358-5592
https://orcid.org/0000-0003-4034-269X
https://orcid.org/0000-0002-0425-2665

Modern Finance. 2025, 3, 1

32

returns series but a transmitter of risk spillovers in the volatility series. Green equity (GE)
and green bonds (GB) are net receivers in both the returns and volatility of returns
analyses. Figure 3 offers a visual illustration of these relationships. The LHS (RHS)
figure illustrates the network connectedness in terms of returns (volatility of returns).
The arrows signal the net directional connectedness between two variables in the system
with a one-way direction arrow. The source of each arrow defines the transmitter, and
the point of the arrow indicates the receiver of shocks. The more arrows, the more
dominant the variable in the system. Red arrows indicate that a variable is the dominant
transmitter of pairwise spillover, while a blue arrow indicates the dominant receiver of
spillover. As can be seen from the figure, the conclusions are similar to the static
connectedness analysis shown in Table 3. In the case of returns, DB is the dominant net
transmitter, while DE is the dominant net receiver. In terms of volatility, DB is the
dominant net transmitter, while GE is the dominant net receiver.

Table 3. Static Connectedness Tables

Panel A: Static Connectedness — Returns

GB GE DB DE CUI FROM
GB 48.7 79 35.9 6.8 0.6 51.3
GE 8.3 55 16 20.3 0.4 45
DB 30.8 12 41.9 14.8 0.5 58.1
DE 7 20.5 19.2 53.1 0.2 46.9
CUI 0.9 0 0.4 0.1 98.5 1.5
TO 47.1 40.4 71.4 42.1 1.7 202.8
NET -4.2 -4.6 13.3 -4.8 0.2 TCI=40.56
Panel B: Static Connectedness — Volatility of Returns
GB GE DB DE CUI FROM
GB 45.1 11.9 26.6 15.9 0.4 54.9
GE 12.8 57.3 15.3 14.5 0 42.7
DB 24.2 11.6 41.5 22.1 0.6 58.5
DE 14.6 13.5 21.6 47.8 2.4 52.2
CUI 0.6 0.1 1.3 5 93 7
TO 52.2 37 64.9 57.7 3.5 215.2
NET -2.7 -5.6 6.4 5.4 -3.5 TCI=43.04

Note. This table shows the connectedness measures between the system variables under a
TVP-VAR approach. VAR order is 1 as determined by the Schwarz information criterion. Panels A
and B report the findings for the Returns, and the volatility of returns. The sample period is
January 2007-March 2021. The table shows the estimated contribution to a 10-day-ahead forecast
error variance decomposition. The bold diagonal elements are the (individual) variance
percentages for each variable. TCI is the total connectedness index. The off-diagonal values
illustrate the bi-directional interaction between the different system variables. The row “From”
shows the total spillovers absorbed by a certain variable from all system variables, and “To” is the
spillover of shocks by a certain variable to all other variables.

Surprisingly, the CUI seems to have only a minor influence on the system variables.
In fact, its total aggregate influence is only 1.7%, and its absorption of risk spillovers is
only 1.5%. Consequently, the net spillover of CUI is only +0.2%. A similar picture arises
from the analysis of the volatility of returns shown in Panel B. Even though it seems that
the impact in terms of volatility is more evident, the impact is still low when we observe
the total impact in terms of TO and FROM the system. Further support for this
independence of the CUI may be seen from its diagonal values (98.5% and 93% in Panel
A and Panel B, respectively). Over 90% of the fluctuations in the CUI are not connected
to changes in other variables.
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A major limitation of the static analysis may be that the relationship is assumed to
be constant across time. To delve deeper into the relationship between the system
variables, we turn to a dynamic connectedness analysis.

4.2. Dynamic spillover analysis

Figure 3 refers to the return series connectedness (left panel) and its right panel depicts
the volatility connectedness. The values in the vertical axis are the total connectedness
index (%): on average, the proportion of the variation that can be referred to the
dynamics between the system variables.

Figure 3. Pairwise Static Net Connectedness

Returns Volatility of Returns

Notes: The above graphical descriptions illustrate the symbiosis network connectedness of the
system variables. The system includes the following variables: GB (Green Bonds), GE (Green
Equity), DB (“Dirty” Bonds), DE (“Dirty Equity”) and CUI (the Climate Uncertainty Index). The
left (right) figure illustrates the network connectedness in terms of returns (volatility of returns).
Arrows signal the net directional connectedness between two variables in the system with a
one-way direction arrow. The source of the arrow shows the transmitter, and the point of the
arrow shows the receiver of spillover. More arrows mean a more influential variable in the
connectedness. Red arrows mean that a certain variable is the largest transmitter of pairwise
spillover, and blue arrows indicate the largest receiver of spillover.

Figures 4-6 present a dynamic picture of the connectedness analysis across the
sample period. More specifically, Figure 4 shows the total connectedness index (in
percentage terms) between the system variables, while Figure 5 and Figure 6 describe
the NET spillover (TO minus FROM) of each variable versus the rest of the system
variables, in terms of the returns and volatility series, respectively.

Figure 4 describes the (average) proportion of the variation that can be attributed to
mutual fluctuations in the system variables. Figure 4.1 shows the return series
connectedness, while Figure 4.2 depicts the volatility connectedness. As can be seen
from the two figures, connectedness is far from being constant across time, and peaks
during periods of market turbulence. The first period, around the years 2007 to 2008, can
be attributed to the outbreak of the subprime crisis and the subsequent global financial
crisis. The second period is around the years 2009-2011, at the time of the European debt
crisis. Finally, the third period begins in early 2020, when the COVID-19 pandemic
erupted. These results also conform to the results obtained by Pham (2021) showing that
the connectedness between green bonds and green equity is stronger during extreme
market conditions. Relatively low levels of connectedness are observed during the years
preceding the COVID-19 crisis.
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Figure 4. Total Connectedness Index

Total Connectedness

Figure 4.1: Returns

Total Connectedness

Figure 4.2: Volatility of Returns

Notes: Total Connectedness Index. The figures above track the total connectedness index across
time.

Next, we turn to the discussion of the return and volatility connectedness between a
certain variable and the whole system over the full sample period. To achieve that,
Figures 5 and 6 display the NET spillover (TO minus FROM) of each variable versus the
other system variables. The nature of the relationship is determined by the value
(positive/negative) of the connectedness.

In terms of returns, and according to Figure 5, it seems that dirty bonds (DB) and
the CUI are mostly transmitters over the full sample period, whereas dirty equity (DE),
green bonds (GB), and green equity (GE) are mostly net receivers. Two important points
arise from the current analysis. First, as opposed to the static analysis implying that the
bond and equity measures are immune to fluctuations in the CUI, the dynamic analysis
provides evidence that CUI can be a transmitter of return shocks. Second, this role as a
transmitter is clear during the time of several important episodes, especially around the
subprime crisis and the European debt crisis. This evidence for CUI as a net transmitter
is consistent with former studies, such as Lundgren et al. (2018), showing other
uncertainty indices, such as the VIX and the Economic Policy Uncertainty Index (EPU by
Baker et al, 2016) were net transmitters of volatility connectedness for green investments
during the subprime crisis and the European sovereign debt crisis. However, we find
that the transmission of shocks by the CUI has weakened over the last five years.
Interestingly, its contribution is very small even during the COVID-19 crisis, and it even
turns out to be a recipient of spillovers from the system. These findings may explain the
apparently mild impact of CUI found in the framework of the static analysis. This
illustrates the way that static analysis may hide different episodes and patterns across
time and underscores the importance of performing dynamic analysis.

Figure 6 presents similar results in terms of the volatility of returns. According to
the trends shown in this figure, DB, DE, and CUI are the main transmitters through most
of the sample period, while GB is the dominant receiver of risk spillovers. Interestingly,
GE seems to be a net receiver of volatility spillovers during two major turbulent periods,
namely the subprime crisis and the COVID-19 pandemic. However, during the
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remaining years, GE is a net transmitter of volatility shocks. As in the results for returns
(Figure 5), the CUI performs as a net transmitter of volatility shocks around the
subprime crisis and the European debt crisis, but this effect then weakens, and it turns
into a net recipient of spillovers during the five most recent years, including the
COVID-19 period.

Figure 5. Dynamic Net Connectedness Index — Returns

DB DE
3 3
2 2
1 1
o} o ‘ -
: T W
-2 -2
3 -3
2008 2010 2012 2014 2016 2018 2020 2008 2010 2012 2014 2016 2018 2020
GB GE
3 3
2 2
1 1
o o ly“rw-vv———-- ~~~~
-1 -1 p ..
-2 -2
-3 -3
2008 2010 2012 2014 2016 2018 2020 2008 2010 2012 2014 2016 2018 2020
cul
3
2
1
° ——

2008 2010 2012 2014 2016 2018 2020

Notes: The above graphs depict the dynamic NET spillover (TO minus FROM) of each variable
versus the rest of the system variables in terms of returns. The symbiotic nature of the relationship
is determined by the value of the connectedness. Positive (negative) values imply transmission
(absorption) by a system variable.

Figure 6. Dynamic Net Connectedness Index — Volatility of Returns
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Notes: The above graphs depict the dynamic NET spillover (TO minus FROM) of each variable
versus the rest of the system variables in terms of volatility of returns. The symbiotic nature of the


https://crossmark.crossref.org/dialog/?doi=10.61351/mf.v3i1.230&domain=mf-journal.com
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-1358-5592
https://orcid.org/0000-0003-4034-269X
https://orcid.org/0000-0002-0425-2665

Modern Finance. 2025, 3, 1

36

References

relationship is determined by the value of the connectedness. Positive (negative) values imply
transmission (absorption) by a system variable.

5. Conclusions

In this paper, we examine the connectedness between green equity and bonds (GE
and GB: green investments), dirty equity and bonds (DE and DB: dirty investments), and
the novel Climate Policy Uncertainty Index (CUI) proposed by Gavriilidis, (2021). We
use both static and dynamic approaches to identify the net transmitters and net receivers
of risk spillovers. Given the increasing public interest in climate change, economic
sustainability and the corresponding investment flows that fuel green investments, we
present here an important attempt to characterize the relationships between green and
dirty investments and their possible dependence on the CUIL. While our static analysis
shows that green investments (both bonds and equity) are immune to fluctuations in the
CUI a deeper examination through the lens of dynamic analysis shows that CUI
performs as a net transmitter of both return and volatility spillovers. This phenomenon
is evident around the 2007-2008 subprime crisis and the European debt crisis. However,
during the five most recent years the transmission of risk spillovers by the CUI has
weakened, and it has even turned into a net receiver during the COVID-19 period.

Our paper has several implications for both policy decision-makers and market
participants. For policy-makers, our results show that the connectedness between green
and dirty investments is high, especially during turbulent times. Therefore, the addition
of any further uncertainty in the form of climate policy uncertainty may even exacerbate
risk spillovers between the two asset classes. Given the growing interest and awareness
of climate issues, policy-makers in the climate field should consider the timing of
proposed reforms, which, as exogenous events, may significantly impact green and dirty
investments. Hence, policy-makers should endeavor to disclose sufficient information
about their future policy plans. This may alleviate the detrimental effect of policy shocks.
For investors aiming to exploit the diversification benefits of green and dirty
investments, our findings show that these benefits are dependent on market conditions.
In cases such as the COVID-19 pandemic, as opposed to the subprime crisis, for example,
risk spillovers can be fueled by overall uncertainty in the market, rather than climate
policy uncertainty itself. However, it is evident that in stressful times, the spillovers
between green and dirty bonds and green and dirty equity are considerably higher.

Future studies may extend our examination to consider the impact and
connectedness of the CUI with alternative investments such as Bitcoin, Ethereum, and
other major cryptocurrencies, which several of them are known to be extremely
polluting in their mining process. Our attempt to quantify the relationship between the
CUI and green and dirty investments is restricted by the fact that the CUI index is
available only monthly. Therefore, an examination of the relationship over narrower
time periods, using daily or weekly observations, would assist in a better understanding
of the dynamics between the CUI and green and dirty investments.
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