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Abstract: This paper constructs deep neural network (DNN) models for equity-premium 

forecasting. We compare the forecasting performance of DNN models with that of ordinary least 

squares (OLS) and historical average (HA) models. The DNN models robustly work best and 

significantly outperform both OLS and HA models in both in- and out-of-sample tests and asset 

allocation exercises. Specifically, DNN models generate monthly out-of-sample R2 of 3.42% and an 

annual utility gain of 2.99% for a mean-variance investor from 2011:1 to 2016:12. Moreover, the 

forecasting performance of DNN models is enhanced by adding 14 further variables selected from 

finance literature. 
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1. Introduction 

Equity premium forecasting is one of the core issues in financial research. It is closely 

related to many important financial issues, such as portfolio management, capital cost, 

and market effectiveness (Rapach & Zhou, 2013; Rapach et al., 2010). However, the out-

of-sample predictability is still controversial. For example, Welch and Goyal (2008) find 

that 14 popular predictive variables do not outperform the simple historical average (HA) 

of returns. However, Campbell and Thompson (2008) point out that equity premium is 

predictable out-of-sample by adding parameter constraints based on financial theory. 

Neely et al. (2014) also show that combining information from both macroeconomic 

variables and technical indicators using principal components analysis (PCA) performs 

significantly better than the historical average forecast. 

Among methods for stock return prediction, traditional linear regression methods 

have been widely adopted, e.g., OLS (Ordinary Least Squares), LASSO (Least Absolute 

Shrinkage and Selection Operator, see Tibshirani, 2011), Ridge regression (Tikhonov, 

1998). However, literature applying nonlinear methods, especially deep learning, to 

extract information from the stock return time series is still limited (Bekiros et al., 2016; 

Gupta et al., 2018). The ability to extract and transform features from data, and to identify 

hidden nonlinear relations without relying on econometric assumptions and human 

expertise, makes deep learning much more attractive than other machine learning 

methods. On the other hand, the number of conditioning variables that are believed to 

have forecasting power for returns is large and has continued to increase over the last five 

decades. The traditional methods are reaching their limits on handling a large number of 

conditioning variables, so more advanced statistical tools, such as deep learning, can be a 
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solution (Gu et al., 2018). As one of the most popular deep learning methods, Deep Neural 

Network (DNN) DNN does not require manual indicator selection and enables us to 

apply much more variables as inputs. In this paper, we apply DNN method to directly 

forecast the U.S. equity premium and compare the result with that of OLS regression 

method. 

Specifically, following Neely et al. (2014), we compare the forecasting 

performance(measured by  𝑀𝑆𝐹𝐸OS, 𝑅OS
2 , and MSFE-adjusted statistic) of the Ordinary 

Least Squares models using 28 input variables (OLS+28) with Deep Neural Network 

models using the same 28 input variables (DNN+28) and Deep Neural Network models 

using the same 28 factors and additional 14 variables (DNN+42). Next, following Kandel 

and Stambaugh (1996) and Welch and Goyal (2008), we use the out-of-sample forecasts to 

compute the Certainty Equivalent Return (CER) gain and Sharpe ratio for mean-variance 

investors who optimally allocate their wealth between equities and risk-free bills. Our 

results show that the OLS+28 model has a surprisingly poor performance over the out-of-

sample period 2011:01-2016:12, which Neely et al. (2014) didn’t test due to data 

availability. In contrast, the two DNN models both have good performances. The 𝑅OS
2  of 

DNN models are near 3%, and the DNN models generate large and robust economic gains 

for investors with an annualized CER gain at around 3%. The monthly Sharpe ratio of 

DNN models substantially outperforms HA and OLS+28 model. 

Our study contributes to the existing literature in three ways. First, to the best of our 

knowledge, we are the first to apply deep learning——one of the hottest IT technologies—

—to forecast equity premiums in a finance academic paper. Unlike most studies focusing 

on traditional econometric models, we introduce a nonlinear machine learning model to 

forecast equity premiums. Our results show that DNN models can outperform HA 

models and OLS models. Especially, we find the poor predictive ability of OLS models 

during the period 2011:01-2016:12, which is beyond the period studied by Neely et al. 

(2014). However, the DNN models still work well in this period. Second, we test whether 

DNN models can incorporate more predictive information from additional 14 variables 

selected from existing finance literature. The results show that the forecasting 

performance of DNN can be improved by inputting more variables. These, in turn, verify 

the existing finance literature. Last but not least, our asset allocation results indicate that 

DNN models can be applied to practical investment management and produce a large 

number of economic values.  

The rest of the paper is organized as follows. Section 2 presents the methodology and 

data. Section 3 discusses the empirical results. Section 4 concludes the paper. 

2. Methodology and Data 

2.1. HA model 

Welch and Goyal(2008) argue that simple historical average(HA) forecasts equity 

premium better than regressions equity premium on predictors including 14 popular 

macroeconomic variables. So our first benchmark model is HA model, which can be 

expressed as follows: 

𝑅𝑡+1 =
1

𝑡
∑ 𝑅𝑠
𝑡
𝑠=1              (1) 

where 𝑅𝑡 is the equity premium at month t. 

2.2. OLS model 

Based on PCA and OLS predictive regression framework, Neely et al. (2014) find that, 

compared with HA model, combining information from both 14 macroeconomic variables 

and 14 technical variables significantly improves equity premium forecasts. We repeat 

their study and define OLS models as follows: 

𝑅𝑡+1 = 𝛼𝑖 + 𝛽𝑖𝑥𝑖,𝑡 + 𝜀𝑖,𝑡+1            (2) 



Modern Finance. 2023, 1(1) 3 
 

 

 

where Rt+1 is the equity premium at month t+1, xi,t is the predictor i at month t. Based on 

data through t, we can get �̂�𝑖,𝑡 , �̂�𝑖,𝑡 from the OLS estimate of 𝛼𝑖,𝑡 , 𝛽𝑖,𝑡. Then the out-of-

sample forecast �̂�𝑡+1 is 

�̂�𝑡+1 = �̂�𝑖 + �̂�𝑖𝑥𝑖,𝑡            (3) 

Especially, we denote the OLS regression on principal components extracted from 

these 28 variables studied by Neely et al. (2014) as “OLS+28” model. 

2.3. DNN model 

Our DNN models have the following general equations: 

𝑥1
(𝑙)

= ReLU[BN(𝑥(0)′)𝜃1
(0)
]          (4) 

𝑥𝑛
(𝑙)

= ReLU(BN(𝑥(𝑙−1)′)𝜃𝑛
(𝑙−1)

)            (5) 

�̂�𝑡+1 = 𝑥(𝑁
(𝑙)−1)′𝜃(𝑁

(𝑙)−1)            (6) 

where N(l) denotes the number of neurons in each layer 𝑙 ∈ {1, . . . , 𝑁(𝑙)}. We define the 

output of neuron n in layer l as 𝑥𝑛
(𝑙)

 and the vector of outputs for this layer (augmented 

to include a constant,𝑥0
(𝑙)

) as 𝑥
(𝑙)

= (1, 𝑥1
(𝑙)
, . . . , 𝑥

𝑁(𝑙)
(𝑙)

)′. The number of units in the input 

layer is equal to the dimension of the variables, and let 𝑥
(0)

= (1, 𝑥1, . . . , 𝑥𝑚)′, where xm is 

the m-th input variable. Let 𝜃𝑛
(𝑙−1)

 denotes weight and bias parameters in each layer 𝑙 ∈

{1, . . . , 𝑁(𝑙)}. �̂�𝑡+1 is the forecast of log equity premium at month t+1. Rectified linear unit 

(ReLU) is the most popular activation function (Nair and Hinton, 2010) and we use this at 

all nodes. Batch normalization (BN) is a simple regularization technique for controlling 

the variability of variables across different regions of the network and across different 

datasets (Nair and Hinton, 2010). Equation (4) states the relationship between the input 

variables in input layer and the output vectors in the first hidden layer. Equation (5) 

shows the recursively output formula for the neural network at each neuron in layer l. 

And equation (6) gives the final output of forecasting results. For comparing with HA 

and OLS+28 models, we first apply the same 28 variables as input to the OLS+28 model 

and DNN+28 model. Then, in order to examine whether DNN models can extract 

information from the 14 additional predictors to improve the forecast performance, we 

add 14 additional variables selected from existing finance literature and obtain the 

DNN+42 models. 

At present, there is no uniform approach to determine the best parameters such as 

number of layers and neurons for DNN on a given problem. Since Gu et al. (2018) suggest 

that shallow learning outperforms the relatively deeper learning, we choose three or four 

hidden layers to start search in our study. To solve this nonlinearity and nonconvexity 

problem, we use adaptive moments method (Adam, Kingma, et al., 2014) to train our 

DNN models and grid search method to select the best one.1 Finally, DNN+28 models 

take 200, 200, 200, and 128 neurons in four hidden layers and 0, 0.5, 20 as the values of the 

weight decay of Adam, dropout probability and epochs respectively. For DNN+42 

models, these values are 600, 300, 300 in three hidden layers and 0, 0.5, 10, respectively. 

For robustness check, we will discuss the effect of those key parameters on forecasting 

performance. 

DNN models tend to suffer from overfitting when tuning parameters to achieve 

satisfactory results. Four methods are applied to prevent overfitting: First, we shrink the 

weight parameters of DNN model via L2 penalized estimation method, because the 

method can control the weight of regularization term in loss function. Second, we apply 

 

1 Adam is a commonly used optimization method for deep learning, just like that of OLS for linear regression. Grid method research, 

which is a traditional way of performing hyperparameter optimization, is simply an exhausting searching through a manually 

specified subset of the hyperparameter space of a learning algorithm. 
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dropout technique to prevent overfitting and co-adaptations of neurons, and set the 

output of any neuron to zero with probability p. Models with dropout can be interpreted 

as an ensemble of models with different numbers of neurons in each layer, but also with 

weight sharing, and thus can enhance generalization ability (Srivastava et al. 2014). Third, 

early stopping method is adopted to determine the best training epoch. And we stop 

training once the model performance stops improving on test datasets. Finally, we use the 

batch normalization algorithm, which normalizes the input of each layer to ensure that 

the input data of each layer is stable, thus achieving the purpose of speeding up training 

and improving generalization ability. 

2.4. Forecast Evaluation Measures 

Following Neely et al. (2014) and Welch and Goyal (2008), we employ two kinds of 

forecast evaluation measures. First,OS 2 and MSFE-adjusted Statistics. 𝑅OS2 measures the 

forecasting accuracy versus benchmark HA model and a monthly 𝑅OS2 of 0.5% is 

economically significant (Campbell & Thompson, 2008). MSFE-adjusted statistic 

measures the statistical significance (Clark & West, 2007). Second, Asset Allocation 

Performance measured by following six measures: (1) certainty equivalent return gain [CER 

gain, △(ann%)], (2) CER gain in expansions [△(ann%), EXP], (3) CER gain in recessions 

[△(ann%), REC], (4) Sharpe ratio, (5) Relative average turnover, (6) CER gain with 50bps 

per transaction [△(ann%), cost = 50bps].2 

2.5. Data 

The dataset used covers the monthly period from 1950:12 to 2016:12, based on data 

availability. The equity premium Rt is computed as the difference between the log return 

on the S&P 500 (including dividends) and the log return on a risk-free bill. As mentioned 

before, in order to compare the forecasting performance of our considered models, we 

select 48 predictors3. These are consisted of three groups: 14 macroeconomic variables 

from Welch and Goyal (2008), 14 technical variables from Neely et al. (2014), and 14 

additional variables from existing finance literatures including investors sentiment 

changes (Wurgler and Baker, 2006), financial stress index (Cardarelli et al., 2011), ratio of 

52-week high (George & Hwang, 2004),etc.4 

Table 1 reports the summary statistics for the log equity premium (1950:12-2016:12), 

macroeconomic variables (1950:12-2016:12), technical variables (1950:12-2016:12), and 

additional variables (1965:08-2016:12). The average monthly equity premium (0.004) 

divided by its standard deviation (0.043) produces a monthly Sharpe ratio value of 0.088. 

Most of the macroeconomic variables and additional variables are strongly auto-

correlated. 

 

2 For brevity, the details for the definition and computation of all these measures can be seen from Goyal & Welch (2008) and Neely 

et al. (2014) . 
3 Online Appendix Table A1 provides detailed information on the source and computation methods of the 48 variables. 
4 The macroeconomic variables are collected from Amit Goyal’s webpage at http://www.hec.unil.ch/agoyal/. The technical variables 

are available from Guofu Zhou’s webpage at http://apps.olin.wustl.edu/faculty/zhou/. The investor sentiment data are collected from 

http://people.stern.nyu.edu/jwurgler/. 
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Table 1. Summary Statistic 

 Mean Median Std Min Max Auto-cor Skewness Kurtosis  Mean Median Std Min Max Auto-cor. Skewness Kurtosis 

Panel A: Log equity premium, December 1950 to December 2016 

 0.004 0.008 0.043 -0.248 0.149 0.049 -0.669 2.535          

Panel B: Macroeconomic variables, December 1950 to December 2016 Panel C: Technical variables, December 1950 to December 2016 

DP -3.602 -3.531 0.412 -4.524 -2.753 0.994 -0.134 -0.872 MA(1,9) 0.677 1 0.468 0 1 0.703 -0.761 -1.425 

DY -3.597 -3.525 0.412 -4.531 -2.751 0.994 -0.139 -0.848 MA(1,12) 0.708 1 0.455 0 1 0.780 -0.919 -1.160 

EP -2.831 -2.860 0.449 -4.836 -1.899 0.989 -0.723 2.648 MA(2,9) 0.684 1 0.465 0 1 0.748 -0.793 -1.375 

DE -0.771 -0.815 0.320 -1.244 1.379 0.986 2.961 15.854 MA(2,12) 0.705 1 0.456 0 1 0.821 -0.901 -1.191 

RVOL 0.145 0.135 0.051 0.055 0.316 0.963 0.799 0.549 MA(3,9) 0.686 1 0.465 0 1 0.785 -0.801 -1.362 

BM 0.498 0.414 0.270 0.121 1.207 0.994 0.761 -0.465 MA(3,12) 0.703 1 0.457 0 1 0.817 -0.893 -1.207 

NTIS -0.010 -0.013 0.020 -0.051 0.058 0.979 0.650 0.265 MOM(9) 0.703 1 0.457 0 1 0.767 -0.893 -1.207 

TBL -4.866 -4.970 3.275 -16.300 -0.010 0.990 -0.527 0.596 MOM(12) 0.728 1 0.445 0 1 0.804 -1.026 -0.951 

LTY -6.772 -6.460 2.683 -14.820 -1.750 0.993 -0.589 0.132 VOL(1,9) 0.666 1 0.472 0 1 0.609 -0.706 -1.506 

LTR 0.639 0.510 3.054 -11.240 15.230 0.037 0.380 2.275 VOL(1,12) 0.687 1 0.464 0 1 0.709 -0.809 -1.349 

TMS 1.905 2.060 1.507 -3.650 4.550 0.955 -0.464 -0.172 VOL(2,9) 0.660 1 0.474 0 1 0.761 -0.675 -1.549 

DFY 1.062 0.940 0.448 0.320 3.380 0.964 1.754 4.229 VOL(2,12) 0.690 1 0.463 0 1 0.825 -0.826 -1.322 

DFR 0.011 0.060 1.498 -9.750 7.370 -0.064 -0.348 6.146 VOL(3,9) 0.676 1 0.468 0 1 0.770 -0.753 -1.437 

INFL -0.330 -0.305 0.359 -1.792 1.915 0.619 0.160 3.458 VOL(3,12) 0.682 1 0.466 0 1 0.835 -0.785 -1.388 

Panel D: Additional variables, August 1965 to December 2016 

PDND -4.658 -6.194 13.58 -50.23 31.632 0.970 0.147 0.147 WH52_Ratio 0.936 0.965 0.083 0.51 1.04 0.891 -1.858 3.915 

RIPO 16.808 12.700 19.44 -28.80 119.10 0.648 2.112 6.403 WH52_Abs 0.154 0.000 0.361 0.00 1.00 0.079 1.922 1.700 

NIPO 25.916 19.000 23.23 - 122.00 0.862 1.203 1.079 DV 0.010 0.009 0.003 0.01 0.02 0.997 0.649 -0.287 

CEFD 8.674 9.220 7.343 -10.91 25.28 0.962 -0.124 -0.327 WV 0.009 0.009 0.002 0.00 0.01 0.998 0.128 -0.778 

S 0.172 0.151 0.086 0.045 0.430 0.994 0.946 0.348 AV 0.009 0.009 0.003 0.01 0.02 0.992 0.592 -0.595 

ΔSENT 0.001 0.032 0.942 -3.616 5.416 0.086 0.289 2.882 VAR005 0.060 0.058 0.015 0.03 0.08 0.980 0.024 -1.063 

FS 100.77 100.74 0.894 98.359 105.89 0.857 0.621 2.229 VAR001 0.078 0.080 0.020 0.04 0.11 0.981 -0.191 -1.054 

These popular 14 macroeconomic variables including log of dividend-price ratio[log(DP)], log of Dividend yield[log(DY)], log of 

earnings-price ratio[log(EP)], log of dividend-payout ratio[log(DE)], equity risk premium volatility(RVOL), book-to-market 

ratio(BM), net equity expansion(NTIS), treasury bill rate(TBL), long-term yield(LTY), long-term return(LTR), term spread(TMS), 

default yield spread(DFY), default return spread(DFR), inflation(INFL). These 14 technical variables based on three popular trend
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following strategies: moving average variables (MA), momentum variables (MOM), and volume 

variables (Vol). We choose different parameters and obtain 14 technical variables: MA(1,9), 

MA(1,12), MA(2,9), MA(2,12), MA(3,9), MA(3,12), MOM(9), MOM(12), VOL(1,9), VOL(1,12), 

VOL(2,9), VOL(2,12), VOL(3,9), VOL(3,12), and all these 14 technical variables are binary variable.  

These 14 additional variables including dividend premium (PDND), number of IPOs(RIPO), 

average first-day returns (NIPO), closed-end fund discount(CEFD), equity share in new issues(S), 

sentiment changes(ΔSENT), financial stress(FS), ratio of 52-week high(WH52_Ratio), absolute of 52-

week high(WH52_Abs), daily volatility(DV), weekly volatility(WV), annual volatility(AV), 5% of 

the quantile in the past 60 months(VAR005), 1% of the quantile in the past 60 months(VAR001). 

3. Empirical results 

Similar to Neely et al. (2014), these models are estimated in-sample using recursively 

expanding windows with initial length of 15 years. We divide out-of-sample period into 

three panels: panel A (1966:01-2011:12), panel B (1980:09-2010:12), and panel C (2011:01-

2016:12).5 We report results in each panel for the whole period along with NBER-date 

business-cycle expansions and recessions period.6 

3.1. In-sample test results 

Table 2 reports the in-sample results of HA, OLS+28, DNN+28, DNN+42 models for 

the three panels. The results in Panel A, show that OLS+28 models can beat the HA models 

in terms of MSFE and R2, which is consistent with Neely et al. (2014).7 Overall, the in-

sample results of DNN models outperform HA and OLS+28 models on all the three 

panels, which is not affected by business-cycle expansions or recessions 

Table 2. In-sample Test Results 

Model 
 

𝑴𝑺𝑭𝑬IS 𝑹IS
𝟐  (%) 

𝑹IS
𝟐 . 

EXP (%) 

𝑹IS
𝟐  

REC (%) 

 Panel A: January 1966 to December 2011 

HA  20.23    

OLS+28  15.15 0.05 0.42 0.52 

DNN+28  15.47 3.03 1.08 5.48 

 Panel B: September 1980 to December 2010 

HA  20.54    

OLS+28  16.24 0.04 0.29 0.41 

DNN+28  15.47 3.03 1.08 5.48 

DNN+42  18.56 3.72 0.50 6.96 

 Panel C: January 2011 to December 2016 

HA  10.67    

OLS+28  17.49 1.81 1.81 - 

DNN+28  17.37 2.62 2.62 - 

DNN+42  18.59 3.81 3.81 - 

This table reports the in-sample performance of various measures of forecast models estimated 

using recursively expanding windows with 180 initial months. MSFEIS is the in-sample mean 

squared forecast error. 𝑅IS 2 measures the mean of the percent reduction in mean squared forecast 

error (MSFE) for the given forecast model relative to the historical average benchmark forecast. 𝑅IS 

2 statistics are also calculated separately for NBER-dated expansions (EXP) and recessions (REC). 

 

5 The reason why we divided according to panel A is to reproduce Christopher et al. (2014)’s result and facilitate the comparison 

with the DNN models. Panel B is because the forecasting start time of 14 additional variables is 1980:09, which is convenient 

compared with the DNN+48 model. Panel C is designed to test and compare the out-of-samples which nearly didin’t be examined 

by Christopher et al. (2014) due to the time limited. 
6 More details for NBER-date business-cycle period can be found at https://www.nber.org/cycles/cyclesmain.html. 
7 We report estimated slope coefficients, MSFE and R2 of the bivariate predictive regression between the equity premium and one 

predictor variable as showed in Christopher et al. (2014) in Online Appendix Table A2. 
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3.2. Out-of-Sample forecasting results 

Table 3 provides the out-of-sample forecasting results of models.8 From Panel A of 

Table 3, in terms of 𝑅OS2 and 𝑀𝑆𝐹𝐸OS, the OLS+28 model outperforms the HA model from 

1966:01 to 2011:12, which have almost the same results as those of Neely et al. (2014). 

However, Panel B shows that the performance of OLS+28 model in each panel is worse 

than the HA model since 1980:09. This means that the OLS+28 model only performs better 

than the HA model in the former 15 years. Besides, the OLS+28 model obtains significantly 

large positive 𝑅OS2 (11.37%, 10.64% in panel A and panel B, respectively) during recessions, 

but disappointingly negative 𝑅OS2 during expansions (-2.63%, -4.14% in panel A and panel 

B, respectively). This suggests that the OLS+28 model’s strong performance on the whole 

sample is largely due to high 𝑅OS2 values during recessions. From Panel C, it further shows 

that, surprisingly, the OLS+28 model displays no out-of-sample predictive ability in terms 

of 𝑅OS2 (- 5.02%) from 2011:01 to 2016:12, a period that has not been examined by Neely et 

al. (2014). Overall, the OLS+28 model does not have good predictive robustness. 

Turning to our proposed DNN models, the results in Table 3 show that both DNN+28 

and DNN+42 model strongly beat the simple HA benchmark and the OLS+28 model in 

terms of MSFE and 𝑅OS2. The out-of-sample MSFEs for DNN models are significantly less 

than that of HA and OLS+28 at the conventional confidence level. Impressively, it is worth 

pointing out that the 𝑅OS2, EXP statistics of DNN models overwhelmingly beat the OLS+28 

model and are positive in each panel. These indicate that DNN models can outperform 

the HA model both in expansions and recessions, and have good robustness. 

Table 3. Out-of-Sample Forecasting Results 

Model 𝑴𝑺𝑭𝑬IS 𝑹IS
𝟐  (%) 

𝑹IS
𝟐 . 

EXP (%) 

𝑹IS
𝟐  

REC (%) 

Panel A: January 1966 to December 2011 

HA 20.23    

OLS+28 15.15 0.05 0.42 0.52 

DNN+28 15.47 3.03 1.08 5.48 

Panel B: September 1980 to December 2010 

HA 20.54    

OLS+28 16.24 0.04 0.29 0.41 

DNN+28 15.47 3.03 1.08 5.48 

DNN+42 18.56 3.72 0.50 6.96 

Panel C: January 2011 to December 2016 

HA 10.67    

OLS+28 17.49 1.81 1.81 - 

DNN+28 17.37 2.62 2.62 - 

DNN+42 18.59 3.81 3.81 - 

Note. This table reports the out-of-sample performance of various measures of forecast models 

estimated using recursively expanding windows with 180 initial months. MSFEOS is the out-of-

sample mean squared forecast error. 𝑅𝑂𝑆 2 measures the percent reduction in mean squared forecast 

error (MSFE) for the given forecast model relative to the historical average benchmark forecast. 

MSFE-adjusted is the Clark and West (2007) statistic for testing the null hypothesis that the historical 

average forecast MSFE is less than or equal to the competing forecast MSFE against the one-sided 

(upper-tail) alternative hypothesis that the historical average forecast MSFE is greater than the 

competing forecast MSFE. *, **, *** indicate significance at the 10%, 5% and 1% levels, respectively. 

𝑅𝑂𝑆2 statistics is also reported separately for NBER-dated expansions (EXP) and recessions (REC). 

The out-of-sample evaluation periods vary in terms of different panels 

 

8 Similarly to Neely et al. (2014), we report out-of-sample forecasts for the bivariate OLS regression model between the equity risk 

premium and single variable, PC-ECON, PC-TECH in Online Appendix Table A3. 
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Moreover, it shows that, overall, the performance of DNN+42 model are relatively 

better than the DNN+28 models.9 Especially, the DNN+42 model has an 𝑅OS2 of 3.37% in 

Panel B of Table 2, which significantly exceeds the 𝑅OS2 of 1.49% of DNN+28 model. The 

out-of-sample MSFEs of DNN+42 model are much less than that of HA models at the 1% 

confidence level. Thus, the results suggest that the forecasting performance of DNN 

modes is enhanced by incorporating 14 additional variables. 

3.3. Asset allocation results 

Table 4 reports the portfolio performance for asset allocation over 1966:01-2016:12. In 

accord with the 𝑅OS2 in Table 1, the OLS+28 model does not uniformly get robustness 

performance in terms of △(ann%), △(ann%), EXP, and △(ann%), REC in Table 4. 

Turning to the performance of DNN models, Table 4 shows that CER gains in both 

recessions and expansions are positive. Besides, though the turnover is relatively high 

compared with HA and OLS+28 models, the CER gains with a proportional transactions 

cost of 50 basis points per transaction are still positive. From the perspective of asset 

allocation, the DNN+28 models also obtain good performance. Table 4 consistently 

confirms that the DNN+42 model outperforms the DNN+28 model in terms of CER gain 

and Sharpe ratio. DNN+42 models generate monthly out-of-sample R2 of 3.42% and 

annual utility gain of 2.99% for a mean-variance investor from 2011:1 to 2016:12. The asset 

allocation analysis demonstrates a substantial economic value of employing DNN models 

for equity premium forecasting. 

Table 4. Portfolio Performance Measures (Risk aversion coefficient (𝛾) = 3) 

Note: This table reports the portfolio performance measures for a mean-variance investor who 

allocates capital monthly between equities and risk-free bills using the monthly out-of-sample 

forecast results of the U.S. equity premium based on different forecast models. The utility gain 

△(ann%) is the annualized certainty equivalent return gain for the investor with risk aversion 

coefficient of three. △(ann%) statistics are also reported separately for NBER-dated expansions 

(EXP) and recessions (REC). The monthly Sharpe ratio is the mean portfolio return in excess of the 

risk-free rate divided by its standard deviation. The out-of-sample evaluation periods are varies in 

terms of different panels. Relative average turnover is the average turnover for the portfolio based 

on the model forecast divided by the average turnover for the portfolio based on the historical 

average forecast. The △(ann%), cost=50bps is the CER gain assuming a proportional transactions 

 

9 To show the out-of-sample forecast result for these models visually, we depict out-of-sample forecast log equity premium for these 

models over three panels in Online Appendix Figure A1. It suggests that DNN models have a lower forecast variance and can more 

correctly reflect actual market fluctuations during expansions than OLS models. 

Model △(ann%) 
△(ann%), 

EXP 

△(ann%), 

REC 
Sharpe ratio Relative average turnover △(ann%), cost =50 bps 

Panel A: January 1966 to December 2011 

HA(CER) 4.87 9.33 -17.52 0.06 2.66% 4.70 

OLS+28 5.07 0.05 30.33 0.16 6.43 4.20 

DNN+28 4.40 1.46 18.99 0.14 13.64 2.37 

Panel B: September 1980 to December 2010 

HA(CER) 7.12 11.54 -17.61 0.10 2.63% 6.95 

OLS+28 2.77 -1.57 26.96 0.16 5.18 2.09 

DNN+28 2.49 1.13 9.90 0.15 14.36 0.37 

DNN+42 4.48 0.32 27.65 0.20 19.85 1.48 

Panel C: January 2011 to December 2016 

HA(CER) 8.35 8.35 - 0.26 2.31% 8.21 

OLS+28 -4.56 -4.56 - 0.16 12.50 -6.19 

DNN+28 2.88 2.88 - 0.31 7.78 1.95 

DNN+42 2.99 2.99 - 0.33 16.52 0.84 
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cost of 50 basis points per transaction. For comparison, the historical average model [HA(CER)] is 

the annualized certainty equivalent return, using as a benchmark for other models to compute the 

utility gain. 

3.4. Robustness checks 

To further validate our results, we conduct the following robustness checks. First, the 

effects of the number of DNN models’ epochs, dropout probability and weight decay on 

forecasting performance are displayed in Figure 1.10 It shows that these key parameters 

have good performance near the optimal value. Second, we report the out-of-sample 

forecasting results year by year for our models (Table A11 in the Online Appendix). 

Finally, we check the results of asset allocation exercise with risk aversion coefficients 

equal to 4,5,6 (Table A4 – Table A10 in the Online Appendix). Overall, these robustness 

checks confirm that DNN models indeed work better than HA models and OLS models 

for forecasting equity premium. 

Figure 1. Effects of the Number of DNN Models’ Epochs, Dropout Probability and Weight Decay 

on 𝑅OS2 and CER Gains in Panel C 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

These figures depict how 𝑅OS2 and delta CER change with the number of’ epochs, dropout 

probability and weight decay applied to DNN models in panel C (2011:01-2016:12). 𝑅OS2 measures 

the percent reduction in mean squared forecast error (MSFE) for the given forecast model relative 

 

10 More details about the effects in panel B can be found at Figure A2 in the Online Appendix. 
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to the historical average benchmark forecast. The Delta CER [△(ann%)] measures the annualized 

certainty equivalent return gain for the investor with risk aversion coefficient of three for DNN 

models. 

4. Conclusion 

This study compares the predictive ability of deep neural network models with that 

of ordinary least squares models and historical average models. We find that DNN models 

robustly work the best and significantly outperform both OLS and HA models in both in- 

and out-of-sample tests and asset allocation exercises. Moreover, the forecasting 

performance of DNN is enhanced by adding 14 additional variables selected from finance 

literature, which indicates that the DNN comprehensively incorporates the predictive 

information contained in these variables. One possible explanation for their excellent 

performance is that the nonlinear DNN automatically extract high dimension features 

from data and discover different forecasting patterns in data. Our study is of great 

significance to portfolio construction and risk management for investors. 
 

Supplementary Materials: Online Appendix is available from the authors.   

Author Contributions: Conceptualization, Xianzheng Zhou, and Huaigang Long.; methodology, 

Xianzheng Zhou.; software, Xianzheng Zhou; validation, Xianzheng Zhou., Huaigang Long, and 

Hui Zhou.; formal analysis, Xianzheng Zhou; investigation, Xianzheng Zhou; resources, Hui Zhou; 

data curation, Hui Zhou ; writing—original draft preparation, Xianzheng Zhou; writing—review 

and editing, Huaigang Long; visualization, Hui Zhou; supervision, Huaigang Long; project 

administration, Huaigang Long; funding acquisition, Huaigang Long. All authors have read and 

agreed to the published version of the manuscript. 

Funding: This research received no external funding. 

Data Availability Statement: The processed data from this study are available upon request. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

Baker, M., & Wurgler, J. (2006). Investor Sentiment and the Cross-Section of Stock Returns. Journal of Finance, 61(4), 1645-1680. 

Bekiros, S., Gupta, R., & Majumdar, A. (2016). Incorporating economic policy uncertainty in US equity premium models: A nonlinear 

predictability analysis. Finance Research Letters, 18, 291-296. 

Bengio, Y. (2009). Learning deep architectures for AI. Foundations and Trends® in Machine Learning, 2(1), 1-127. 

Campbell, J. Y., & Thompson, S. B. (2008). Predicting Excess Stock Returns out of Sample: Can Anything Beat the Historical Average? 

Review of Financial Studies, 21(4), 1509-1531. 

Cardarelli, R., Elekdag, S., & Lall, S. (2011). Financial stress and economic contractions. Journal of Financial Stability, 7(2), 78-97. 

Clark, T. E., & West, K. D. (2007). Approximately normal tests for equal predictive accuracy in nested models. Journal of Econometrics, 

138(1), 291-311. 

George, T. J., & Hwang, C. Y. (2004). The 52-week high and momentum investing. Journal of Finance, 59(5), 2145-2176. 

Gu, S., Kelly, B. T., & Xiu, D. (2018). Empirical Asset Pricing via Machine Learning. SSRN working paper. 

http://dx.doi.org/10.2139/ssrn.3159577. 

Gupta, R., Mwamba, J. W. M., & Wohar, M. E. (2018). The role of partisan conflict in forecasting the U.S. equity premium: A 

nonparametric approach. Finance Research Letters, 25, 131-136. 

Kandel, S., & Stambaugh, R. F. (1996). On the predictability of stock returns: an asset-allocation perspective. Journal of Finance, 51(2), 

385-424. 

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980. 

Nair, V., & Hinton, G. E. (2010). Rectified Linear Units Improve Restricted Boltzmann Machines. In Proceedings of the 27th International 

Conference on Machine Learning (ICML-10), 807-814. 

Neely, C. J., Rapach, D. E., & Tu, J. et al. (2014). Forecasting the Equity Risk Premium: The Role of Technical Indicators. Management 

Science, 60(7), 1772-1791. 

Rapach, D. E., Strauss, J. K., & Zhou, G. (2010). Out-of-Sample Equity Premium Prediction: Combination Forecasts and Links to the 

Real Economy. Review of Financial Studies, 23(2), 821-862. 

Rapach, D., & Zhou, G. (2013). Forecasting stock returns. In Handbook of Economic Forecasting (pp. 328–383). Elsevier B.V. 

Srivastava, N., Hinton, G., & Krizhevsky, A. et al. (2014). Dropout: A Simple Way to Prevent Neural Networks from Overfitting. 

Journal of Machine Learning Research, 15(1), 1929-1958. 



Modern Finance. 2023, 1(1) 11 
 

 

 

Tibshirani, R. (2011). Regression Shrinkage and Selection via the Lasso. Journal of the Royal Statistical Society, 73(3), 267-288. 

Tikhonov, A. N., Leonov, A. S., & Yagola, A. G. (2018). Nonlinear ill-posed problems. London: Chapman & Hall. ISBN 0412786605. 

Welch, I., & Goyal, A. (2008). A Comprehensive Look at the Empirical Performance of Equity Premium Prediction. Review of Financial 

Studies, 21(4), 1455-1508. 

Disclaimer: All statements, viewpoints, and data featured in the publications are exclusively those of the individual author(s) and 

contributor(s), not of MFI and/or its editor(s). MFI and/or the editor(s) absolve themselves of any liability for harm to individuals or 

property that might arise from any concepts, methods, instructions, or products mentioned in the content. 

 

 


